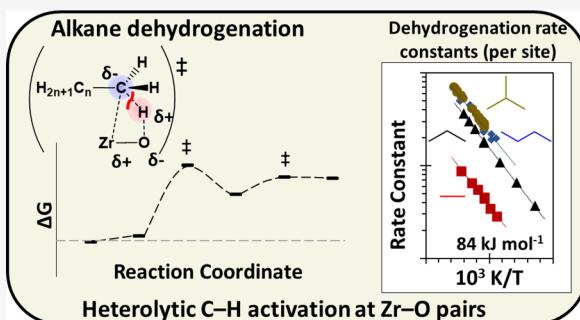


Heterolytic C–H Activation Routes in Catalytic Dehydrogenation of Light Alkanes on Lewis Acid–Base Pairs at ZrO_2 Surfaces

Nicholas R. Jaegers, Vardan Danghyan, Junnan Shangguan, Carlos Lizandara-Pueyo, Prashant Deshlahra, and Enrique Iglesia*

Cite This: *J. Am. Chem. Soc.* 2024, 146, 25710–25726

Read Online


ACCESS |

Metrics & More

Article Recommendations

Supporting Information

ABSTRACT: Alkane dehydrogenation is an enabling route to make alkenes useful as chemical intermediates. This study demonstrates the high reactivity of Lewis acid–base (LAB) site pairs at ZrO_2 powders for dehydrogenation of C_2 – C_4 alkanes and the essential requirement for chemical treatments to remove strongly bound H_2O and CO_2 titrants to avoid the high temperatures required for their desorption and the concomitant loss of active sites through sintering and annealing of ZrO_2 crystallites. The energies and free energies of bound intermediates and transition states from density functional theory (DFT), taken together with kinetic analysis and isotopic methods, demonstrated the kinetic relevance and heterolytic character of the first C–H activation at terminal C-atoms for all alkanes with a modest activation barrier (84 kJ mol^{-1}) at essentially bare Zr–O LAB site pairs. β -Hydride elimination from the formed alkyl carbanions lead to their desorption as alkene products in steps that are favored over their parallel C–C cleavage reactions (by 100 kJ mol^{-1}), leading to high dehydrogenation selectivities (>98%) at the temperatures required for practical yields in such endothermic dehydrogenation reactions (700–900 K). The facile recombination of bound proton-hydride pairs then completes a dehydrogenation turnover. These findings provide compelling evidence for the remarkable reactivity and selectivity of LAB sites on earth-abundant oxides and for the need to uncover them through chemical treatments, which combine to give gravimetric dehydrogenation rates that exceed those on the toxic (Cr) or costly (Pt) catalysts used in practice.

1. INTRODUCTION

Light alkenes are essential feedstocks for the synthesis of chemical intermediates. They are produced through thermal cracking of natural gas condensate and naphtha feedstocks and as a side product of catalytic cracking of petroleum-derived streams. The emergence of shale gas as a carbon feedstock led to an abundance of propane, but the use of its condensate fraction in thermal cracking favors C_2H_4 over C_3H_6 as products;¹ taken together, these trends have led to renewed emphasis on the production of C_3H_6 via direct on-purpose C_3H_8 dehydrogenation.² These processes currently use costly Pt-based catalysts (e.g., OleflexTM)³ or toxic Cr-based catalysts (e.g., Catofin).⁴ These catalytic reactions are proposed to proceed via homolytic C–H activation channels on metal and redox-active centers, although heterolytic pathways have also been proposed on Cr(III) centers.⁵ These systems lead to parasitic C–C cleavage reactions and to unsaturated organic residues, which cause, in turn, alkene yield losses and catalyst deactivation.⁶

Surfaces of earth-abundant oxides, and specifically their exposed Lewis acid–base (LAB) pairs, can activate C–H bonds in alkanes and alkanols.^{7–11} ZrO_2 catalysts activate C–H bonds in oxygenates via heterolytic routes on exposed $\text{Zr}^{\delta+}$ –

$\text{O}^{\delta-}$ site pairs,¹² with a kinetic competence that depends on the identity of the ZrO_2 crystal phase and the exposed surface facets.^{13,14} These LAB centers also activate the H–OH bonds of H_2O ^{15,16} in very exothermic reactions (-140 to -165 kJ mol^{-1}) to form strongly bound $\text{H}^+–\text{OH}^-$ pairs.^{15,17} Consequently, H_2O titrates LAB sites, rendering them inaccessible for catalysis and obscuring their high intrinsic reactivity in C–H activation steps. These H_2O (and e.g., CO_2) titrants can be desorbed from LAB sites by thermal treatments, but at temperatures that cause sintering and annealing, which leads to the destruction of the low-coordination sites that are most competent in stabilizing H_2O dissociation products and C–H activation transition states.

The uncovering of low-coordination sites at ZrO_2 surfaces by chemical treatments circumvents these obstacles and leads to gravimetric alkane dehydrogenation rates similar to (and

Received: June 10, 2024

Revised: August 24, 2024

Accepted: August 26, 2024

Published: September 6, 2024

even higher than) those on Pt and Cr catalysts. Dimethyl ether, as well as CH_3OH and alkenes, react with bound species derived from H_2O and CO_2 to uncover LAB sites at much lower temperatures than thermal treatments intended to desorb titrants, leading to rates about 100-fold higher than on catalysts treated in He , H_2 , or O_2 .^{18,19} Such unique reactivity is preserved during alkane dehydrogenation catalysis only through the strict removal of H_2O and CO_2 (and any molecule, such as O_2 , that forms them) from inlet streams.^{18,19}

This study exploits these chemical treatments and the use of anhydrous and anaerobic inlet streams to assess the properties of uniquely active $\text{Zr}-\text{O}$ LAB site pairs and the mechanistic details of the heterolytic C–H activation routes that they mediate in the dehydrogenation of $\text{C}_2\text{--C}_4$ alkanes. The evidence provided shows that the chemical treatments that activate ZrO_2 catalysts serve as chemical desiccants that remove H_2O -derived titrants from the active sites, thus enabling detailed mechanistic assessments of alkane dehydrogenation on clean $\text{Zr}-\text{O}$ site pairs. In contrast to homolytic alkane dehydrogenation routes, these heterolytic channels enable C–H cleavage without the formation of radical-like species or the formation/involvement of reduced Zr atoms as active centers, a requirement invoked in previous studies.²⁰ These reactions of $\text{C}_2\text{--C}_4$ alkanes proceed through kinetically relevant C–H abstraction transition states (TS) and their relative reactivities reflect differences in activation entropies resulting from the greater retention of molecular mobility for larger bound anionic alkyls at the C–H activation TS. DFT-derived energies of bound intermediates and transition states confirmed the common kinetically relevant steps among these alkanes and the requirement for realistic structural models of low-coordination $\text{Zr}-\text{O}$ pairs at plane intersections in nanoparticle surfaces for even more accurate theoretical descriptions. DFT-based assessments, combined with kinetic trends and isotope effects, also confirmed the essentially bare nature of $\text{Zr}-\text{O}$ pairs during alkane dehydrogenation catalysis, in agreement with measured rates that are strictly proportional to $\text{C}_2\text{--C}_4$ alkane pressures.

2. EXPERIMENTAL AND COMPUTATIONAL METHODS

2.1. Catalyst Synthesis. ZrO_2 samples were prepared by a known hydrothermal method.²¹ $\text{ZrO}(\text{NO}_3)_2\text{--xH}_2\text{O}$ (Sigma-Aldrich, 99%, 12.7 g) and $\text{CO}(\text{NH}_2)_2$ (urea; Sigma-Aldrich, 99.5%; 21.6 g) were separately dissolved in 30 cm^3 H_2O (18.2 $\text{M}\Omega\text{-cm}$) at 323 K. The solutions were mixed, placed in a Teflon-lined autoclave, and held at 393 K for 20 h; $\text{CO}(\text{NH}_2)_2$ decomposed during this process, leading to a gradual increase in pH and to the precipitation of Zr oxyhydroxides. The powders formed were suspended in H_2O (18.2 $\text{M}\Omega\text{-cm}$) and separated by centrifugation (8000 rpm), a sequence repeated four times. They were then treated in ambient stagnant air at 393 K for 12 h. Next, the samples were heated in flowing He (Praxair, 99.999%, 1.6 $\text{cm}^3 \text{g}^{-1} \text{s}^{-1}$) at 723 K (0.17 K s^{-1}) for 5 h. These procedures formed the monoclinic phase of ZrO_2 (*m*- ZrO_2), as shown from measured diffractograms and reference patterns (Figure S1). Its BET surface area was 130 $\text{m}^2 \text{g}^{-1}$, as measured by N_2 physisorption (described in the Supporting Information section S1). Higher treatment temperatures cause sintering and a loss of surface area (from 130 $\text{m}^2 \text{g}^{-1}$ at 723 K to 110 $\text{m}^2 \text{g}^{-1}$ after treatment at 873 K). Another *m*- ZrO_2 sample was obtained from commercial sources (NORPRO; Saint-Gobain) and treated in flowing He (Praxair, 99.999%, 1.6 $\text{cm}^3 \text{g}^{-1} \text{s}^{-1}$) by heating to 723 at 0.17 K s^{-1} and holding for 5 h. This sample showed a surface area of 112 $\text{m}^2 \text{g}^{-1}$ and X-ray diffractograms confirmed its monoclinic crystal structure. These

samples and the inert diluents used in all catalytic experiments were sieved to retain 180–250 μm aggregates before use.

2.2. Chemical Treatments and Alkane Dehydrogenation Rate Measurements. Alkane dehydrogenation rates were measured on ZrO_2 catalysts (0.02–0.1 g) using either straight or U-shaped quartz tubular reactors (1 cm internal diameter). Catalyst aggregates were mixed with quartz powders (Sigma-Aldrich, 180–250 μm ; treated in 1 M HNO_3 at 293 K for 1 h, washed with 18.2 $\text{M}\Omega\text{-cm}$ H_2O , and then heated to 1073 K in flowing dry air at 10 K min^{-1} and held for 8 h). Dilution ratios (by mass) were >20:1 quartz/ ZrO_2 (typically 50:1), a dilution extent shown to avoid reaction-induced temperature changes. Reactors containing catalyst samples were resistively heated (Applied Test Systems 3210 series furnace); temperatures were set by a Watlow 96 controller and measured using a K-type thermocouple in contact with the outer reactor wall at its catalyst bed axial midpoint. Gaseous reactants were metered by using electronic mass flow controllers (Porter).

Catalysts were treated in He flow (Praxair, 99.999%; 40–100 $\text{cm}^3 \text{g}^{-1} \text{s}^{-1}$) by heating to 723 K at 0.33 K s^{-1} and holding for 1 h before rate measurements. Catalysts were treated using chemical cleansing protocols,¹⁸ unless otherwise noted. These treatments involved exposing samples to dimethyl ether (DME; 1.5 kPa; from Praxair, 5.0% DME, 5.1% Ar in He ; 40 $\text{cm}^3 \text{g}^{-1} \text{s}^{-1}$) for 0.25 h at 723 K and then to a He flow for 0.42 h to remove residual DME and reaction products. In some cases, samples were treated in O_2 to remove carbonaceous deposits that formed after extended use; these treatments involved treatments in O_2 (Praxair, 99.99%, 5% O_2 in He ; 40 $\text{cm}^3 \text{g}^{-1} \text{s}^{-1}$) for 0.5 h at 723–873 K; these treatments led to the full recovery of alkane dehydrogenation rates after subsequent DME treatments.

Rate and selectivity measurements were carried out by flowing different combinations of He , H_2 (Praxair, 99.999%), C_2H_6 (Praxair, 50% in Ar, 99.999%), C_3H_8 (Praxair, 20–50% in Ar, 99.999%), C_4H_8 (Praxair, 49.9% in He , 99.999%), $n\text{C}_4\text{H}_{10}$ (Praxair, 24.3% in Ar, 99.999%), and $i\text{C}_4\text{H}_{10}$ (Praxair, 25.2% in Ar, 99.999%) through the catalyst bed. Unless otherwise noted, such reactant mixtures were treated by flowing them through an $\text{O}_2/\text{H}_2\text{O}$ scrubber (Agilent 5182–9401, 5 ppb) located directly upstream of the reactor.

The identity and concentration of all species in the reactor effluent were determined by online gas chromatography (Agilent 6890A GC) using flame ionization detection (FID) after separation in a capillary column (Agilent; HP-1) and thermal conductivity detection (TCD) after separation in a HP-PLOT-Q column. Products were identified in the chromatographs by comparing their retention times to those of chemical standards and from analysis of representative gas samples by mass spectrometry after similar chromatographic protocols (Agilent 6890A equipped with 5975C MS).

Rates were measured over a range of pressures of alkanes (1–30 kPa) and H_2 (0–30 kPa). They are reported as molar rates of formation of the respective product per mass (gravimetric), surface area (areal), or number of active sites (turnover rates, measured by site titration using H_2O ; see Supporting Information section S3). Dehydrogenation rates were determined by correcting the measured rates for approach to equilibrium, calculated from the mean reactor gas composition and the equilibrium constant ($K_{\text{C--H}}$) for the dehydrogenation of the respective alkane. $K_{\text{C--H}}$ values are shown for a range of temperatures in Figure S3 for C_2H_6 , C_3H_8 , $n\text{C}_4\text{H}_{10}$, and $i\text{C}_4\text{H}_{10}$ dehydrogenations. Selectivities are reported on a carbon basis as the ratio of converted alkane molecules that formed alkanes to those formed from C–C bond scission events. Contributions from homogeneous reactions were small (<0.2% of catalytic rates) but were nevertheless subtracted from all reported rates and selectivities.

Trace quantities of H_2O and O_2 (which forms H_2O from reactions with H_2 and/or hydrocarbons) titrants, present at about 0.1 ppm even after passage through the $\text{O}_2\text{-H}_2\text{O}$ scrubbers, led to the titration of active sites and to a gradual decrease in dehydrogenation rates with time. These rates were corrected for deactivation by extrapolating forward rates ($r_{f,t}$) using a first-order deactivation equation, eq 1:

$$r_{f,t} = r_0 e^{-k_d t} \quad (1)$$

where $r_{f,t}$ is the rate at time t , r_0 is the reaction rate at zero time for the given condition, and k_d is the deactivation rate constant representing active site titration. Such treatments are applicable for early times on stream which show linear rates with time on a semilog plot, or through piecewise application of multiple first-order deactivation models for segments of an experiment in which reaction conditions were changed, thus accounting for the fraction of active sites lost in preceding reaction conditions. Activation barriers for alkane dehydrogenation were also assessed by measuring rates at the highest temperature (e.g., 773 K) and rapidly cooling the catalyst bed. These protocols led to rate and activation energy data that were replicated multiple times in two different reactor systems and for different samples; the agreement between these barriers and those derived from DFT (section 3.5) serves as an independent reassurance of the accuracy and fidelity of these barriers. Rate measurements were taken every 60–120 s to reduce the effects of site deactivation by trace titrant impurities.

$\text{C}_3\text{H}_8\text{-D}_2$ (Cambridge Isotope Laboratories, Inc., D, 99.8% (D₂, 99.5% + HD, 0.4%)) and $\text{C}_3\text{H}_8\text{-C}_3\text{D}_8$ (Aldrich; propane- d_8 , 99 atom% D) mixtures were also used as reactants on $m\text{-ZrO}_2$. The isotopologues formed were determined by collecting the effluent into sample bags and speciating with a mass-selective detector (Agilent, 5957C) after chromatographic separation (HP-1, 50 m \times 0.32 mm \times 1.05 μm). The relative concentrations of each isotopologue were determined from mass fragmentation patterns using matrix deconvolution methods.²² The rates of formation of $\text{C}_3\text{D}_{8-x}\text{H}_x$ products were used to measure cross-exchange rates and to determine the reversibility of C–H activation steps by comparing them to propene formation rates.

2.3. Computational Methods. DFT calculations were implemented using the Vienna ab initio simulation package (VASP; version 5.4.4).²³ The generalized gradient approximation (GGA) as prescribed by the Perdew-Burke-Ernzerhof (PBE) method was used to simulate exchange and correlation interactions.²⁴ The modified dispersion correction (D3) by Grimme et al. was applied to each energy minimization step to account for long-range dispersive interactions.²⁵ Interactions between core and valence electrons were described using projector-augmented wave pseudopotentials.²⁶ Valence states of $[4s^24p^64d^25s^2]$, $[2s^22p^4]$, $[2s^22p^2]$, and $[1s^1]$ were considered for Zr, O, C, and H atoms, respectively. Plane-wave basis sets were cutoff at 450 eV for all calculations, justified by diminishing changes to structure energy as previously reported.²⁷ A Monkhorst-Pack²⁸ k -point $3 \times 3 \times 1$ grid was used to sample the first Brillouin zone. Dipole corrections were used to eliminate long-range electrostatic interactions among the periodic slabs and bound molecules, in the direction perpendicular to the slab surface, as well as among isolated molecules in a vacuum in all directions (used as representative gaseous species). Electronic structures were converged to 10^{-6} eV in self-consistent steps and geometries were converged to 0.05 eV \AA^{-1} . All calculations were conducted in the spin-polarized mode. The use of a Hubbard correction to account for strongly correlated electrons was considered but not implemented because the nonredox nature of the reaction precludes occupation of Zr 4f states and because it did not detectably affect dissociative adsorption energies of C_3H_8 on $m\text{-ZrO}_2(\bar{1}11)$, as also shown in previous work.²⁰

Transition state (TS) structures were isolated by first applying the nudged elastic band (NEB) approach²⁹ and then refined by the Climbing Image method³⁰ to more accurately determine the saddle point, which was then optimized using the Henkelman Dimer method.³¹ The converged TS structures were confirmed by their single imaginary frequency corresponding to the vibration along the reaction coordinate. Vibrational frequencies for surface and gaseous species were calculated using the harmonic oscillator approximation with atomic displacements of ± 0.0015 nm. Reported energies are referenced to the relevant structures of a bare surface and a gaseous alkane (or alkene and H_2). A complete description of the methods used to calculate energies is included in the Supporting Information section S7. Briefly, enthalpies were estimated from zero-point vibrational (ZPV) corrections, and vibrational enthalpies were derived from vibrational frequencies. Entropies were derived from statistical

mechanics formalisms³² also using DFT-derived vibrational frequencies. Gibbs free energies were derived from the computed enthalpies and entropies. Vibrational frequencies were calculated using harmonic oscillator formalisms that often fail to accurately describe low frequencies modes,³³ resulting in overestimations in the entropy of surface bound species. These matters were addressed by replacing the contributions from low frequency modes (threshold set at $< 90 \text{ cm}^{-1}$ from visual inspection of vibrational modes from bound C_3H_8 intermediates) with a fraction (0.7) of the corresponding rotational and translational entropy and enthalpy of the gaseous analogs of bound species (i.e., a number (L) vibrational modes $< 90 \text{ cm}^{-1}$ were replaced with $0.7 \cdot L/6$ for nonlinear or $0.7 \cdot L/5$ for linear molecules of the gaseous rotational and translational entropy and enthalpy).^{34–36}

Enthalpies (H) were determined using eq 2:

$$H = E_0 + E_{ZPV} + H_{vib} + H_{trans} + H_{rot} \quad (2)$$

where E_0 is the DFT-derived electronic energy, E_{ZPV} is the zero-point vibrational energy, and the H terms reflect the vibrational, translational, and rotational contributions to enthalpy. A complete description of the entropy and free energy computation from statistical thermodynamics treatments³⁷ is available in eqs S1–S11. All reported enthalpies, free energies, and entropies are reported at a temperature of 723 K, corresponding to typical experimental temperatures reported here for alkane dehydrogenation reactions, unless noted otherwise.

Periodic slab models of $m\text{-ZrO}_2$ ^{38,39} surfaces were generated using $9 \times 9 \times 6$ Monkhorst Pack k -point grids⁴⁰ and relaxed lattice constants of $a = 0.522 \text{ nm}$, $b = 0.528 \text{ nm}$, $c = 0.539 \text{ nm}$, which are within 2% of those measured and estimated by theory in previous reports.^{17,41–46} The $m\text{-ZrO}_2(\bar{1}11)$ facet was used as the exposed plane due to its low surface energy.^{47–51} The slab model consists of $[2 \times 2]$ -supercells and four layers (Zr basis in the c -axis direction) and 1.65 nm vacuum layers between slabs; the bottom two layers of ZrO_2 were kept at their bulk crystallographic positions during all energy and geometry optimizations. The top view of the $[2 \times 2]$ supercell surface, visualized with VESTA,⁵² is shown in Figure 1. There are four

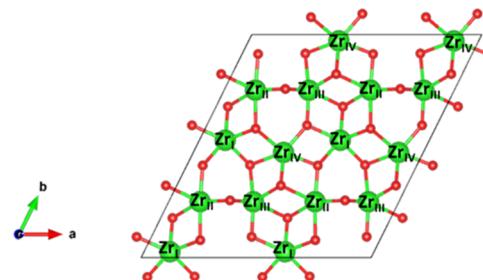
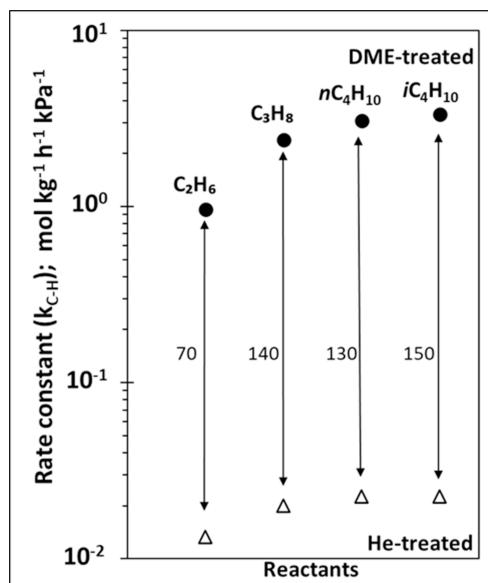


Figure 1. Model of the $m\text{-ZrO}_2(\bar{1}11)$ surface.

coordinatively distinct Zr-atoms: Zr_I , Zr_{II} , and Zr_{III} centers are six-coordinate, and Zr_{IV} is seven-coordinate. Unless specified otherwise, computations of adsorbates were conducted on 2.0 \AA Zr_{II} –O bond of the 2-coordinate O-atom also bound to Zr_{III} ; this Zr–O pair exhibited the strongest dissociative binding energy of H_2O among all pairs surveyed on the surface.


3. RESULTS AND DISCUSSION

3.1. Kinetic Trends in Alkane Dehydrogenation on Chemically Treated $m\text{-ZrO}_2$ Surfaces. Previous studies have shown that high alkane dehydrogenation rates on ZrO_2 surfaces require strictly anhydrous conditions (and the removal of O_2 to < 0.1 ppm, because it forms H_2O and CO_2 during reaction).¹⁹ Treatments that remove bound titrants through chemical reactions lead to rates about 100-fold higher than on samples treated thermally at similar temperatures, because such treatment temperatures are lower than those required for complete desorption.¹⁸ As a result, these chemical dehydrox-

ylation and decarboxylation reactions of ZrO_2 surfaces circumvent the loss of surface area and the preferential destruction of low-coordination Zr–O pairs caused by thermal treatments at temperatures required for desorbing these titrants (e.g., >773 K).

Dimethylether (DME) is particularly effective as a chemical desiccant at modest temperatures (500–723 K) through its hydrolysis⁵³ or reforming⁵⁴ reactions with bound hydroxyl pairs; other reagents (CH_3OH and even alkenes formed from alkane dehydrogenation) are also effective, but in some cases required higher temperatures than DME (e.g., C_3H_8 at 873 K vs DME at 523–723 K). The products detected by online mass-spectrometry are those expected from DME reactions with hydroxyl pairs, specifically reforming and hydrolysis reactions that form CO , H_2 , and CH_3OH . Trace H_2O and/or O_2 impurities in the inlet stream stoichiometrically titrate such sites during reaction and lead to a decrease in rates with time during contact with reactant streams. Such rates can be recovered by subsequent DME treatments (Figure S5). After DME cleaning protocols, gravimetric C_3H_8 dehydrogenation rates on $m\text{-ZrO}_2$ at 723 K exceed those reported on Cr-based catalysts (Catofin process; Figure S8) at significantly higher temperatures (873 K). Apparent rate constants for C_3H_8 dehydrogenation on DME-treated $m\text{-ZrO}_2$ (e.g., 4 mol kg^{-1} h^{-1} kPa^{-1} at 773 K) are also similar or higher than on several reported Pt-based catalysts (used in Oleflex-like processes; e.g., 2.4–15 mol kg^{-1} h^{-1} kPa^{-1} at 873 K; Figure S8).^{19,55,56} These earth-abundant ZrO_2 -based catalysts avoid the use of costly or toxic elements for the on-purpose synthesis of alkenes via alkane dehydrogenation.

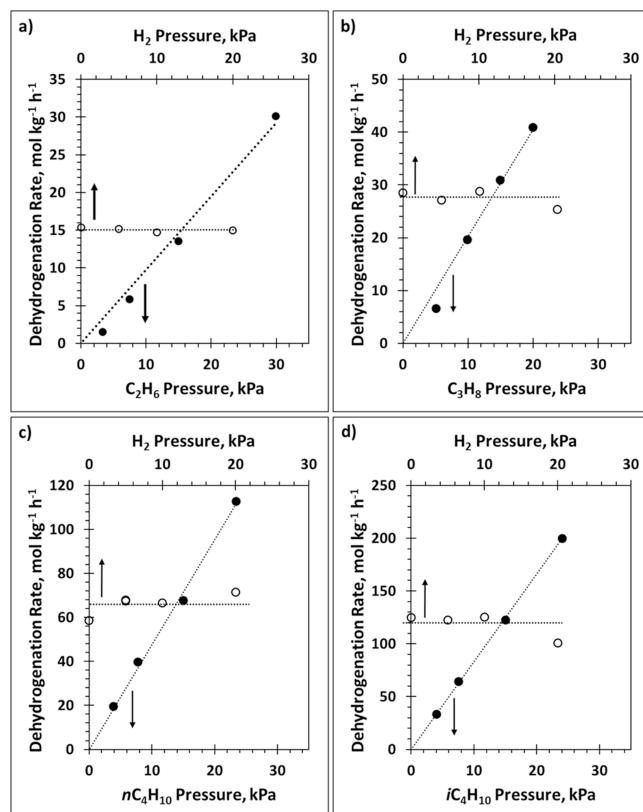

Rate enhancements by DME chemical treatments were previously shown for C_3H_8 reactants on $m\text{-ZrO}_2$,¹⁸ but they are also evident for other alkanes (C_2H_6 , $n\text{C}_4\text{H}_{10}$, and $i\text{C}_4\text{H}_{10}$), as shown by the rate data in Figure 2. Dehydrogenation rates

Figure 2. First-order dehydrogenation rate constants (at 723 K) for C_2H_6 , C_3H_8 , $n\text{C}_4\text{H}_{10}$, and $i\text{C}_4\text{H}_{10}$ reactants after treatment in He (723 K, open triangles) and DME (723 K, black circles). Each rate constant was assessed on the same ZrO_2 sample, testing C_3H_8 before and after each other alkane to ensure that sample quality was retained and measurements were consistent. Rate enhancement by DME treatment for each alkane is listed adjacent to the black double arrows.

increased about 100-fold with these DME treatments over those measured after He treatments at the same temperature (723 K) for each of these alkanes. In the case of $n\text{C}_4\text{H}_{10}$ reactants, equilibrated mixtures of 1-butene and cis and trans 2-butenes were detected together with low concentrations of 1,3-butadiene.

For all alkanes, forward dehydrogenation rates were proportional to the pressure of the alkane and were unaffected by those of H_2 or alkene products (Figure 3). This first-order

Figure 3. Dehydrogenation rates of a) C_2H_6 (773 K), b) C_3H_8 (723 K), c) $n\text{C}_4\text{H}_{10}$ (773 K), and d) $i\text{C}_4\text{H}_{10}$ (773 K) reactants on DME-treated $m\text{-ZrO}_2$ as a function of the respective alkane pressure (bottom axis, closed circles) at 5.1 kPa H_2 , and of the H_2 pressure (top axis, open circles) at 14–16 kPa alkane. Dashed lines to reflect trends.

relation to alkane pressure was observed for C_3H_8 dehydrogenation up to at least 93 kPa of C_3H_8 . The respective first-order rate constants for dehydrogenation of C_2H_6 , C_3H_8 , $n\text{C}_4\text{H}_{10}$, and $i\text{C}_4\text{H}_{10}$ at 723 K are shown in Figure 2 for samples treated in He or DME at 723 K. These rate constants increased with alkane chain length on samples treated in He at 723 K; these effects of alkane size are weaker than previously reported on $m\text{-ZrO}_2$ at 873 K, but similar in trend.²⁰ These reactant size effects persist after DME chemical treatments, but the rates for all alkanes are significantly higher than those on samples treated in He (~100-fold for C_2C_4 alkanes). ZrO_2 also effectively dehydrogenates larger alkanes, such as those that are liquid at 300 K and 1 bar (e.g., C_7 alkanes) and DME treatments can be used to enhance these rates. Such larger alkanes also require strict reactant purification protocols,¹⁹ a topic that will be addressed in a future publication.

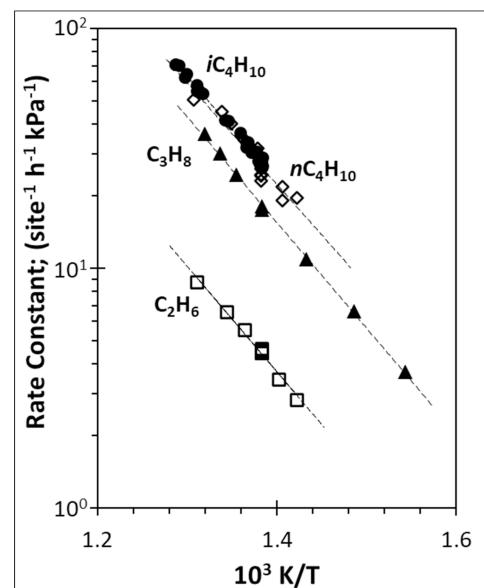
These trends with alkane size and the effects of chemical treatments on $m\text{-ZrO}_2$ samples ($130 \text{ m}^2 \text{ g}^{-1}$) prepared by the

methods described in [section 2.1](#) are also evident on commercial *m*-ZrO₂ powders (Saint Gobain; 112 m² g⁻¹; [Figure S4](#)) for which areal rates after DME treatments (185 μmol m⁻² h⁻¹; 15.2 kPa C₃H₈, 5.1 kPa H₂, and 723 K) were similar to those on the *m*-ZrO₂ (202 μmol m⁻² h⁻¹; 15.2 kPa C₃H₈, 5.1 kPa H₂, and 723 K).

The dehydrogenation rate trends with alkane (C₂H₆, C₃H₈, *n*C₄H₁₀, and *i*C₄H₁₀) and H₂ pressures on DME-treated *m*-ZrO₂ are shown in [Figure 3](#) for each alkane. These rates were proportional to the alkane pressure, consistent with kinetically relevant C–H activation steps on Zr–O pairs that remain essentially bare during dehydrogenation turnovers; H₂ did not inhibit forward dehydrogenation rates but can affect rates measured as alkane conversion approaches equilibrium levels, a thermodynamic effect unrelated to the kinetic competence of the Zr–O site pairs. These data show that forward rates of alkane dehydrogenation (r_{C-H}) can be accurately described by the rate equation, [eq 3](#):

$$r_{C-H} = k_{C-H} \cdot [C_nH_{n+2}] = k_B T / h \cdot e^{-\Delta G^\ddagger / RT} \cdot [C_nH_{n+2}] \quad (3)$$

where k_{C-H} is the first-order dehydrogenation rate constant, $[C_nH_{n+2}]$ is the alkane pressure, and ΔG^\ddagger is the free energy of formation of the kinetically relevant C–H activation TS from its relevant precursors (a bare ZrO₂ surface and a gaseous alkane molecule).


The kinetic relevance of C–H activation steps, inferred from rates strictly proportional to the pressure of each alkane, was confirmed for propane reactants by comparing C₃H₈ and C₃D₈ dehydrogenation rates (4 kPa alkane, 5 kPa H₂, and 723 K). These rates were 2.2 times larger for C₃H₈ than C₃D₈, a normal kinetic isotope effect that is consistent with the kinetic relevance of C–H activation, but which remains agnostic about whether the methyl or methylene C–H bond in C₃H₈ is activated in the kinetically relevant step. It also does not discern whether the first or second sequential C–H activation step is the kinetically relevant elementary step. DFT-derived values of the kinetic isotope effects for proton abstraction (from statistical mechanics and vibrational frequencies; see [section 3.6](#)) agree with those measured (2.4 vs 2.2), reinforcing the plausibility of the kinetic relevance of proton abstraction.

Experiments with C₃H₈-D₂ reactant mixtures were used to infer the extent to which the initial C–H activation step is reversible during dehydrogenation turnovers by comparing the rates of D-incorporation into C₃H₈ reactants and their chemical conversion to propene. Rates of C₃H₈ dehydrogenation on DME-treated *m*-ZrO₂ were about 5-fold higher than for D-insertion into C₃H₈ (723 K, [Figure S6](#)), and D-introduction rates remained constant with time while dehydrogenation rates decreased due to site titration. These results indicate that C–H activation steps do not undergo reverse reactions with D₂ molecules to detectable extents under these conditions (but the alkyl fragment may recombine with the previously abstracted proton before isotopic exchange can occur) and that the deuteration of unreacted propane molecules occurs on sites distinct from those that activate C–H bonds most competently. H₂-D₂ exchange rates on *m*-ZrO₂ at 723 K ([Figure S6](#)) also show that exchange occurs via routes unrelated to those that activate C–H bonds and recombine H-atoms in catalytic dehydrogenation turnovers, evident by a lack of influence of on-stream H₂O pulses (723 K, 0.05–0.25 H₂O·(active site)⁻¹) or DME pulses (723 K, 0.3–1 C₂H₆O·(active site)⁻¹) on H₂-D₂ exchange rates. This contrasts C₃H₈

dehydrogenation experiments which decrease in proportion to the number of H₂O molecules in each pulse (see [Supporting Information section S3](#)).

3.2. Activation Barriers and Their Implications for C–H Activation Routes in C₂–C₄ Alkanes.

[Figure 4](#) shows the

Figure 4. First-order dehydrogenation rate constants (per active site, determined from titration by H₂O during reaction) as a function of temperature in an Arrhenius-type format for C₂H₆ (open squares), C₃H₈ (closed triangles), *n*C₄H₁₀ (open diamonds), and *i*C₄H₁₀ (closed circles) reactants on DME-treated *m*-ZrO₂. Dashed lines indicate exponential regression.

first-order dehydrogenation rate constants (per site, measured by H₂O titration methods; rates vs H₂O uptake shown in [Supporting Information section S3](#)) in Arrhenius-type form for C₂H₆, C₃H₈, *n*C₄H₁₀, and *i*C₄H₁₀ reactants on DME-treated *m*-ZrO₂ (at 723 K). The dehydrogenation rate constants among these alkane reactants reflect site-normalized analogs of the gravimetric rate constants reported in [Figure 2](#) (at 723 K). The activation barriers obtained from rates during decreasing temperature protocols (after chemical treatment and a temperature increase cycle) are listed in [Table 1](#) along with activation entropies (ΔS^\ddagger ; obtained using site counts measured by H₂O titrations; rates vs H₂O uptakes; [Supporting Information section S3](#)). C₃H₈ dehydrogenation rates give an activation barrier of 84 ± 3 kJ mol⁻¹, a value much smaller than previously reported (140 to 300 kJ mol⁻¹)²⁰ for C₃H₈ dehydrogenation on *m*-ZrO₂ surfaces (8–45 nm crystallites) treated thermally before rate measurements.

Dehydrogenation activation barriers for C₂H₆ (84 ± 7 kJ mol⁻¹), *n*C₄H₁₀ (80 ± 18 kJ mol⁻¹), and *i*C₄H₁₀ (83 ± 14 kJ mol⁻¹) alkanes are similar to those for C₃H₈ (84 ± 3). These values reflect barriers for kinetically relevant C–H activation steps, as inferred from kinetic trends for all alkanes ([Figure 3](#)) and the normal kinetic isotope effects observed for propane reactants. These barriers and kinetic evidence do not inform us about which C–H bond is activated (or whether the first or the second H-abstraction is involved) in the kinetically relevant step. Their similar values, however, indicate that such a step must involve a C–H bond that is similar in reactivity for each of these alkane reactants. Differences in rate constants among

Table 1. Measured Activation Enthalpies (ΔE^\ddagger) and Entropies (ΔS^\ddagger) and Reference Gas-Phase Entropies for Light Alkanes at 700 K and 1 bar

Alkane	Measured ΔE^\ddagger (kJ mol ⁻¹)	Measured ΔS^\ddagger (J mol ⁻¹ K ⁻¹)	Total S°_{700} ^a	Gas-Phase Entropy at 700 K, 1 bar (J mol ⁻¹ K ⁻¹)		
				Translational $S^\circ_{700, \text{trans}}$ ^a	Rotational $S^\circ_{700, \text{rot}}$ ^a	Vibrational $S^\circ_{700, \text{vib}}$
C ₂ H ₆	84 ± 7	-132 ± 29	290	169	64	57
C ₃ H ₈	84 ± 3	-119 ± 10	360	174	86	100
<i>n</i> C ₄ H ₁₀	80 ± 18	-122 ± 54	410	177	94	139
<i>i</i> C ₄ H ₁₀	83 ± 14	-118 ± 11	430	177	90	163

^aStandard state entropies determined from NIST;³⁶ ± represents two standard deviations estimated from linear regression

alkanes appear to reflect predominantly their different ΔS^\ddagger values, which become increasingly negative (smaller absolute value for entropy loss) for larger alkanes, but within experimental uncertainty [C₂H₆ (-132 ± 29 J mol⁻¹ K⁻¹), C₃H₈ (-119 ± 10 J mol⁻¹ K⁻¹), *n*C₄H₁₀ (-122 ± 54 J mol⁻¹ K⁻¹), and *i*C₄H₁₀ (-118 ± 11 J mol⁻¹ K⁻¹)].

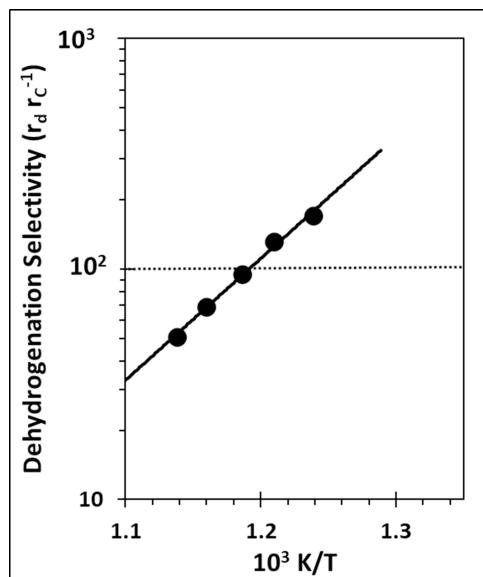
The heterolytic nature of C–H activation on Zr–O Lewis acid–base pairs^{11,12} leads to bound anionic alkyl species and bound cationic hydrogen species (as shown by DFT methods; section 3.6). Bader charge assessments of these species show that they acquire charges of -0.5 and +0.5 e at the relevant TS for the formation of these species; as such, we refer to these species herein as carbanions and protons. Similar barriers for these alkanes suggest that cleavage of the methyl C–H bond (the only common bond type among these alkanes) limits dehydrogenation rates. The reaction energy for heterolytic cleavage of such terminal C–H bonds in gaseous alkanes to form carbanions and protons are, in fact, similar (1751 kJ mol⁻¹ for C₂H₆, 1741 kJ mol⁻¹ for C₃H₈, and 1726 kJ mol⁻¹ for *i*C₄H₁₀; Table S3). These terminal C–H bonds must also be activated in the first C–H cleavage event, because an initial activation of non-methyl C–H bonds would lead to kinetically relevant H-abstraction from methyl C–H bonds that differs more significantly in electronic character, given the prior adjacent C–H activation, among alkanes (second C–H bond activation energies from methyl groups of gaseous C₂H₆: 681 kJ mol⁻¹; C₃H₈: 752 kJ mol⁻¹; *i*-C₄H₁₀: 802 kJ mol⁻¹).

The heterolytic C–H bond energies at methyl groups in gaseous alkanes to form alkyl carbanions and protons are much larger (1726–1757 kJ mol⁻¹; see the thermochemical cycles in Figure S16)^{36,57} than measured activation barriers on *m*-ZrO₂ for C₂H₆ to C₄H₁₀ alkanes (Table 1). These low barriers reflect the stabilization of the fragments formed through their binding at Zr and O surface atoms and their mutual electrostatic attraction as bound species. In the subsequent C–H activation events from alkyl carbanions (formed via proton abstraction from terminal –CH₃ groups in alkanes), hydride abstraction enthalpies (to form an alkene by hydride abstraction at C-atoms vicinal to the position of removed proton)^{36,57} are much smaller than for the preceding methyl proton abstraction, but vary slightly with alkyl chain length (54 to 65 kJ mol⁻¹ from C₂H₆ to *i*C₄H₁₀) (detailed analysis of thermochemical cycles in Figure S16). These enthalpies are much smaller than for the initial proton abstraction from the terminal –CH₃ (1757 to 1726 kJ mol⁻¹ from C₂H₆ to *i*C₄H₁₀).^{36,57} The endothermic formation of gaseous carbanions and protons is energetically demanding, but their binding to exposed Zr–O LAB pairs and the prevalent proximity of the bound cationic and anionic fragments provide the requisite stabilization for the TS and the products of the initial proton abstraction that form the bound carbanion and proton. DFT-derived formation energies of bound *n*C₃H₇^{δ-}–H^{δ+} pairs from gaseous *n*-C₃H₇⁻ and H⁺

species on a Zr–O LAB site pair on *m*-ZrO₂(111) are highly negative (-1709 kJ mol⁻¹), which reflects a strong binding of these species. These findings confirm that the nature of Zr–O sites as a LAB site pair introduces the essential requisites for viable heterolytic routes. In fact, heterolysis on LAB site pairs of ZrO₂ is favored over homolysis, in spite of the more facile nature of the latter process via homogeneous reactions of gaseous alkanes (section 3.4).

3.3. Selectivity to C₃H₈ Dehydrogenation on *m*-ZrO₂ and Implications on the Dehydrogenation Mechanism. Homolytic dissociation energies of terminal C–H bonds in gaseous C₃H₈ are 422 kJ mol⁻¹ (see reaction energies in Table 2 for homolytic and heterolytic C–H and C–C bond

Table 2. Gas Phase Homolytic and Heterolytic Bond Dissociation Energies for the Terminal (Normal; *n*) or Central (iso, *i*) C–H (*n*, *i*, *n*_H and *i*_H) in Alkanes and Alkyl Fragments and C–C Cleavage (from Normal and iso C–H Abstraction; *n*_C and *i*_C) in Alkyl Fragments⁵⁷


Reaction ^a	Homolytic Dissociation Energy (kJ mol ⁻¹)	Heterolytic (anion-proton) Dissociation Energy (kJ mol ⁻¹)
<i>n</i> : C ₃ H ₈ → <i>n</i> C ₃ H ₇ + H	422	1741
<i>n</i> _H : <i>n</i> C ₃ H ₇ + H → C ₃ H ₆ + 2H	139	59
<i>n</i> _C : <i>n</i> C ₃ H ₇ + H → C ₂ H ₄ + CH ₃ + H	99	85
<i>i</i> : C ₃ H ₈ → <i>i</i> C ₃ H ₇ + H	411	1753
<i>i</i> _H : <i>i</i> C ₃ H ₇ + H → C ₃ H ₆ + 2H	150	47
<i>i</i> _C : <i>i</i> C ₃ H ₇ + H → C ₂ H ₄ + CH ₃ + H	Not reported	72

^aNonstoichiometric fragments are depicted as neutral but are either radicals (homolytic) or proton-anion pairs (heterolytic)

dissociation energies),^{36,57} a value much smaller than that for anion-proton formation via its heterolytic counterpart (1741 kJ mol⁻¹),^{36,57} but the binding of a gaseous carbanion and proton at Zr–O LAB pairs is much stronger (-1709 kJ mol⁻¹) than for radical-like species on redox-active oxide surfaces that catalyze dehydrogenation via homolytic C–H activation steps (-50 kJ mol⁻¹ on MoO₃-based polyoxometalates).³⁵ Gaseous *n*C₃H₇ radical fragments cleave methylene C–H bonds to yield C₃H₆ and H₂ (Table 2, bond dissociation energy of 139 kJ mol⁻¹). A competing β -scission reaction to form C₂H₄, CH₃, and H products has a lower dissociation energy (Table 2, 99 kJ mol⁻¹), indicative of a thermodynamic preference for β -scission in homolytic pathways from *n*C₃H₇ fragments. In contrast, heterolytic activation of C–H bonds in alkanes can form carbanions that subsequently undergo β -hydride elimination to generate C₃H₆ and H₂ with a dissociation energy of 59 kJ mol⁻¹ (*n*C₃H₇) and 47 kJ mol⁻¹ (*i*C₃H₇). These dissociation energies for β -hydride elimination are lower

than the analogous elimination of a H-radical via homolytic routes, but also smaller than for the competing β -scission reactions in heterolytic routes to form C_2H_4 , CH_3^- , and H^+ products. Heterolytic β -scission reaction energies of gaseous species are higher than β -hydride elimination energies (Table 2, 85 vs 59 kJ mol^{-1} and 72 vs 47 kJ mol^{-1} for $n\text{C}_3\text{H}_7$ and $i\text{C}_3\text{H}_7$, respectively), indicating preference for β -hydride elimination routes in heterolytic pathways and thus high selectivity to alkene products, which contrasts homolytic routes where β -scission reaction energies are lower than a second C–H activation event.

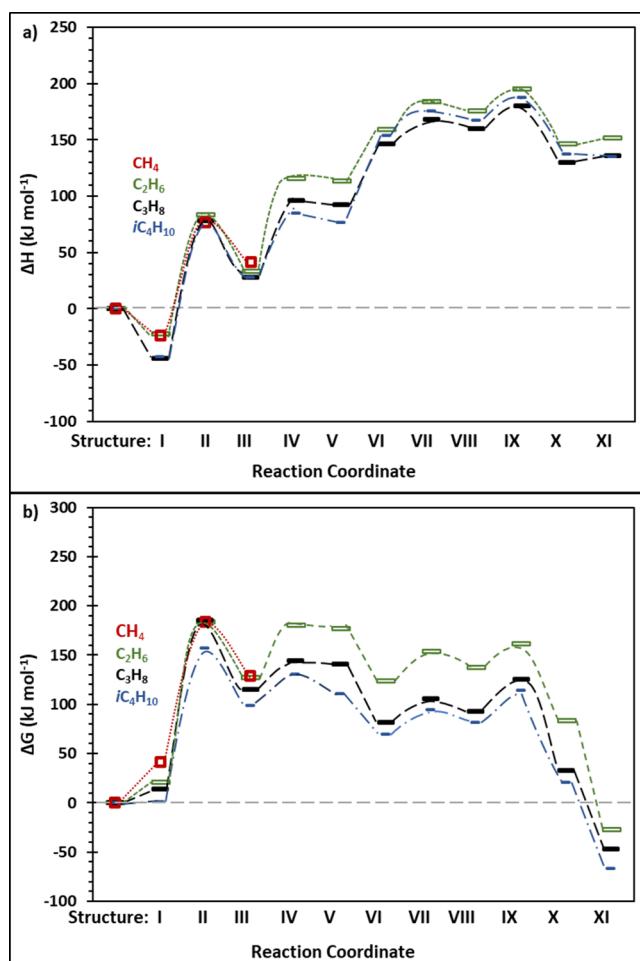

The very high C_3H_6 selectivities in C_3H_8 reactions on $m\text{-ZrO}_2$ are evident from the ratios of dehydrogenation to C–C scission rates shown in Figure 5 (at 793–873 K). The

Figure 5. C_3H_8 dehydrogenation selectivity on DME-treated $m\text{-ZrO}_2$. 15 kPa C_3H_8 and 5.1 kPa H_2 . Solid lines from exponential regression and horizontal dashed line indicate 99% selectivity.

preference for heterolytic (anion-proton) over homolytic (or cation-hydride heterolysis) C–H activation routes on $m\text{-ZrO}_2$ accounts for such high selectivities (selectivity > 99% for $T < 833$ K), with trace C–C scission products detected (e.g., CH_4 , C_2H_4 , and C_2H_6 from C_3H_8). This appears to either reflect β -scission reactions in heterolytic routes that are thermodynamically unfavorable compared to β -hydride elimination, as suggested by bond dissociation energies (Table 2) or a relatively facile C–C bond activation in alkenes.⁵⁷

The higher selectivities observed at lower temperatures reflect apparent C–C cleavage barriers that are about 100 kJ mol^{-1} larger than those for β -hydride elimination in bound propyl carbanions. These differences are directionally similar to thermochemical estimates of heterolytic reaction energies (139 vs 59 kJ mol^{-1} for C–C and C–H activation in gaseous $n\text{C}_3\text{H}_7$ carbanions, respectively; Table 2) and with DFT-based assessments of C–X activation barriers from bound $n\text{C}_3\text{H}_7$ carbanions at which Zr–O pair in $m\text{-ZrO}_2(111)$ surfaces (barriers of 102 kJ mol^{-1} for β -hydride elimination, X = H; 213 kJ mol^{-1} for C–C cleavage, X = C). These DFT-derived differences in barriers (80 kJ mol^{-1} by reaction energy estimates; 111 kJ mol^{-1} by DFT-assessed barriers) are similar to those measured from the data in Figure 6 for C_3H_8 reactants. These observations confirm the heterolytic nature

Figure 6. Reaction coordinate diagram showing the change in enthalpy (top) and free energy (bottom) for CH_4 (red open squares, dotted line), C_2H_6 (green open rectangles, short dashed line), C_3H_8 (black large closed rectangles, long dashed line), and $i\text{C}_4\text{H}_{10}$ (blue small closed rectangles, dashed and dotted line), dehydrogenation referenced to bare $m\text{-ZrO}_2(111)$ surface and gaseous alkane at 1 and 723 K and dehydrogenating to 0.001 bar of alkene and 0.01 bar of H_2 . Reaction enthalpies can be computed by comparing the initial bare surface and gaseous alkane enthalpy to the product H_2 , alkene, and bare surface enthalpy (XI) for each C_2H_6 (152 kJ mol^{-1}), C_3H_8 (136 kJ mol^{-1}), and $i\text{C}_4\text{H}_{10}$ (137 kJ mol^{-1}); these values are comparable to those tabulated from thermodynamic data (142, 129, and 123 kJ mol^{-1} , respectively).

of C–X activation at Zr–O pairs on stoichiometric ZrO_2 surfaces. They contradict the expectations from homolytic activation routes at O-vacancies, proposed to form by treatments in CO at 823 K, which lead to modest rate enhancements compared with $m\text{-ZrO}_2$ surfaces treated with DME to react with surface titrants.^{41,47} The same general trends are evident for other alkanes (e.g., $n\text{C}_4\text{H}_{10}$, see Figure S10); reactions with $n\text{C}_4\text{H}_{10}$ also exhibit increasing dehydrogenation selectivity at lower temperatures, but with a cracking barrier estimated at only 40 kJ mol^{-1} higher than for dehydrogenation. The smaller difference in β -scission and β -hydride elimination is expected from gas phase thermodynamics of $n\text{C}_3\text{H}_7$ and $i\text{C}_4\text{H}_9$ anionic fragments, where the difference in the two competing pathway reaction energies for each species are -26 and -22 kJ mol^{-1} , respectively.

C–H bond heterolysis and the anionic nature of the alkyl fragments bound at Zr–O LAB pairs lead to relative rates of β -hydride abstraction and β -scission of C–C bonds that differ markedly from those in homolytic routes that form radical-like alkyls and heterolytic routes that form alkyl carbenium ions. As a result, reactions of C_3H_8 on $m\text{-ZrO}_2$ selectively form C_3H_6 over $\text{CH}_4/\text{C}_2\text{H}_4$ (Figure 5). Such preferences are also evident from the reaction energies for cleaving C–H and C–C bonds in C_3H_8 when comparing homolytic and heterolytic cleavage in gaseous molecules (Table 2).

3.4. Effect of Alkane Chain Size on Dehydrogenation Rates on DME-Treated $m\text{-ZrO}_2$ Surfaces. Measured C_3H_8 dehydrogenation activation barriers on DME-treated $m\text{-ZrO}_2$ ($84 \pm 3 \text{ kJ mol}^{-1}$) are much smaller than reported previously on $m\text{-ZrO}_2$ catalysts treated thermally (N_2 , 823 K; from 140 to 300 kJ mol^{-1} for ZrO_2 crystallites 8–45 nm in diameter).⁴⁷ Chemical reagents (other than DME) are also effective at reacting with bound H_2O or CO_2 to uncover the most competent Zr–O site pairs and also lead to low activation barriers.^{18,19} These reagents include the alkene products formed in dehydrogenation reactions; as in the case of DME, they can remove bound H_2O (and CO_2) via their hydrolysis and reforming reactions. Consequently, titrants can be removed during dehydrogenation to an extent that depends on the temperature, impurity levels (O_2 and/or its H_2O and CO_2 products), and prevalent concentrations and identity/reactivity of the product alkenes. The higher apparent barriers measured on thermally treated ZrO_2 from temperature increase protocols are likely partially derived from the uncovering of active sites as temperature and alkane conversion levels increase (together with a greater extent of impurity thermal desorption) instead of the inherent kinetic barriers for C–H activation steps. The uncovering of such surface sites at higher temperatures leads to cleaner surfaces, which remain uncovered as temperatures are subsequently decreased; such effects are evident from measured barriers that are about 90 kJ mol^{-1} higher during temperature increase ($200 \pm 6 \text{ kJ mol}^{-1}$, Figure S7) than subsequent temperature decrease (110 kJ mol^{-1} , Figure S7) protocols. These values are similar to those measured on DME-treated samples with increasing temperature ($84 \pm 3 \text{ kJ mol}^{-1}$, Figure 4), on which such active sites were already uncovered at low temperatures by chemical treatment and higher temperatures where product-induced titrant desorption processes become inconsequential.

The ability of alkenes to scavenge titrants during alkane dehydrogenation may lead to a different number of uncovered active sites, depending on the identity and concentration of such products during reactions of each alkane. In such cases, measured activation barriers may reflect the combined effects of temperature and conversion on intrinsic kinetic trends as well as the effectiveness of each alkene product in scavenging bound titrants, thus interfering with direct assessments of the chemical origins of reactivity and activation barriers for each alkane. Such interference can be circumvented by using alkane mixtures, for which each alkane reacts on surfaces exposed to the same mixture of alkene products. The ratio of the dehydrogenation rate constants for a mixture of C_3H_8 and C_2H_6 reactants was measured at 700–873 K upon an increase and then decrease in temperature (shown in Figure S11). The ratio was 4–5 throughout this wide range of temperatures and was similar to those essentially constant ratios (4.1 ± 0.1) throughout this temperature range when C_3H_8 and C_2H_6 dehydrogenation rates were measured independently (Figure

4, dashed line in Figure 6). As such, the most substantial contributions to the differences in rate among alkanes in this temperature range arise from factors outside of enthalpic barriers.

The similar activation barriers for $\text{C}_2\text{-C}_4$ alkanes indicates that their different rate constants (Figure 4) predominantly reflect differences in their pre-exponential factors and thus in their respective activation entropies (ΔS^\ddagger); these differences reflect, in turn, the entropy changes involved in forming the kinetically relevant C–H activation TS from a gaseous alkane and a bare surface. These activation entropies are shown in Table 1 for each alkane and were obtained from their respective rate constants (per site) by:

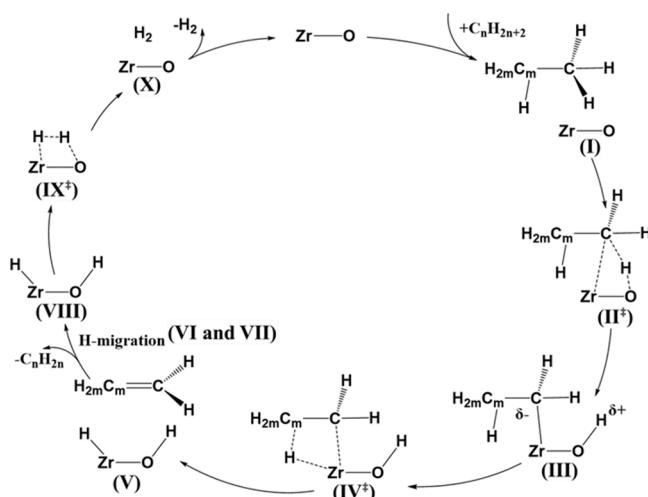
$$k_{\text{C}-\text{H}} = \frac{\kappa k_B T}{h} e^{-\Delta S^\ddagger / R} e^{-\Delta H^\ddagger / RT} \quad (4)$$

These ΔS^\ddagger values become more negative with decreasing alkane size, but remain similar for the different alkanes within experimental uncertainty [C_2H_6 ($-132 \pm 29 \text{ J mol}^{-1} \text{ K}^{-1}$), C_3H_8 ($-119 \pm 10 \text{ J mol}^{-1} \text{ K}^{-1}$), $n\text{C}_4\text{H}_{10}$ ($-122 \pm 54 \text{ J mol}^{-1} \text{ K}^{-1}$), and $i\text{C}_4\text{H}_{10}$ ($-118 \pm 11 \text{ J mol}^{-1} \text{ K}^{-1}$), a difference of 14 $\text{J mol}^{-1} \text{ K}^{-1}$ among alkanes]. This trend is anticipated from the relative magnitude of the rate constants for each alkane (Figure 4).

ΔS values can be dissected into their vibrational (ΔS_{vib}), translational (ΔS_{trans}), and rotational (ΔS_{rot}) contributions for the kinetically relevant TS relative to the gaseous alkane and a bare LAB site. The vibrational component of entropy for gaseous alkanes (S°_{vib} , Table 1)³⁷ shows the largest differences among alkanes (from 57 to 163 $\text{J mol}^{-1} \text{ K}^{-1}$ from C_2H_6 to $i\text{C}_4\text{H}_{10}$, 723 K; Table 1); however, the change in vibrational modes upon C–H abstraction at the TS, a bond which accounts for $\sim 8 \text{ J mol}^{-1} \text{ K}^{-1}$ of the S_{vib} , is anticipated to be nearly identical for each alkane and not meaningfully contribute to the observed differences in rate constant prefactors among alkanes. Translational entropies (S°_{trans}) and rotational entropies (S°_{rot}) derived from statistical mechanics formalisms³⁷ (see Supporting Information section S7) are similar among these alkanes (Table 2, translational: 169 to 177 $\text{J mol}^{-1} \text{ K}^{-1}$ and rotational: 64 to 90 $\text{J mol}^{-1} \text{ K}^{-1}$ for C_2H_6 to $i\text{C}_4\text{H}_{10}$). The weak binding at the TS is likely to cause a loss of translational freedom, with a loss of $0.3S_{\text{trans,gas}} + 0.3S_{\text{rot,gas}}$ derived from trends in binding energy for species that bind strongly and lead to high coverages on catalytic sites, which contrasts the molecular adsorption of alkane-derived species on $m\text{-ZrO}_2$.⁵⁸ Given the differences in S_{trans} and S_{rot} values among alkanes, this treatment would only account for 10 $\text{J mol}^{-1} \text{ K}^{-1}$ of the measured differences in ΔS^\ddagger among alkanes. Since these combined effects do not account for the measured 15 $\text{J mol}^{-1} \text{ K}^{-1}$ differences in ΔS^\ddagger among alkanes, heterolytic dehydrogenation of weakly bound alkanes ($\Delta H = -24$ to -44 kJ mol^{-1} , decreasing with alkane size; section 3.5) on LAB site pairs of ZrO_2 apparently depart such conventions for adsorbed species entropy.

The binding of TS structures at surfaces inhibits translational and rotational freedom to an extent that depends on the binding strength and structural arrangement of the reacting moiety with the surface. Alkane C–C activation reactions were previously shown to exhibit relative rate constants among alkanes of contrasting chain length, driven predominantly by the entropy of the bound alkyl fragment,⁵⁹ where long-chain *n*-alkanes retained a much larger fraction of their entropy upon adsorption, resulting in larger turnover rates for increasing

alkane chain length. This results from fragments of the adsorbed alkanes retaining mobility in the form of residual rotational, translational, and configurational entropy due to the ends of the molecules being bound to the surface and the rest of the molecule being relatively unconstrained. For C–C activation, two C-atoms formed bonds to the surface, limiting the pendent groups to 1D rotational motion. In the case of C–H activation in this work, only one C-atom is constrained to the surface (section 3.5), enabling a greater degree of molecular mobility and thus accounting for the observed trends in dehydrogenation rate constants with alkane chain length.


3.5. DFT-Based Mechanistic Assessments of Alkane Dehydrogenation Rates on Lewis Acid–Base Pairs at $m\text{-ZrO}_2(\overline{1}11)$ Surfaces. DFT-derived energies along the dehydrogenation reaction coordinate for each alkane are used here to do the following:

- i assess the identity, reversibility, and kinetic relevance of elementary steps in the dehydrogenation reaction sequence
- ii confirm the heterolytic character and the location of each of the two required C–H activation steps
- iii demonstrate the weak binding of all species and the uncovered nature of catalytically competent Zr–O pairs during catalysis

These objectives are addressed first for C_2H_6 dehydrogenation on the Zr–O pairs that bind H_2O most strongly (electronic water adsorption energy of -132 kJ mol^{-1} where values range up to -21 kJ mol^{-1} for different Zr–O pairs) at $m\text{-ZrO}_2(\overline{1}11)$ surfaces. This Zr-atom (Zr_{II} site in Figure 1) is bound to the two-coordinate O-atom along the $+a$ -axis (Figure 1) and is used as the model Zr–O LAB site pair to assess plausible pathways for the C_3H_8 dehydrogenation routes.

The catalytic cycle developed here from DFT-derived energies and the bound intermediates and transition states involved is depicted in Scheme 1 and resembles dehydrogenation mechanisms described by Tanabe et al. for the dehydrogenation of oxygenates.^{13,14} The requisite steps involve

Scheme 1. Catalytic Cycle for $\text{C}_n\text{H}_{2n+2}$ Dehydrogenation on ZrO_2 ^a

^aRoman numerals correspond to the structures of intermediates and TS. n is the carbon number of the alkane, used in the scheme to account for a range of alkanes; m is $(n - 1)$.

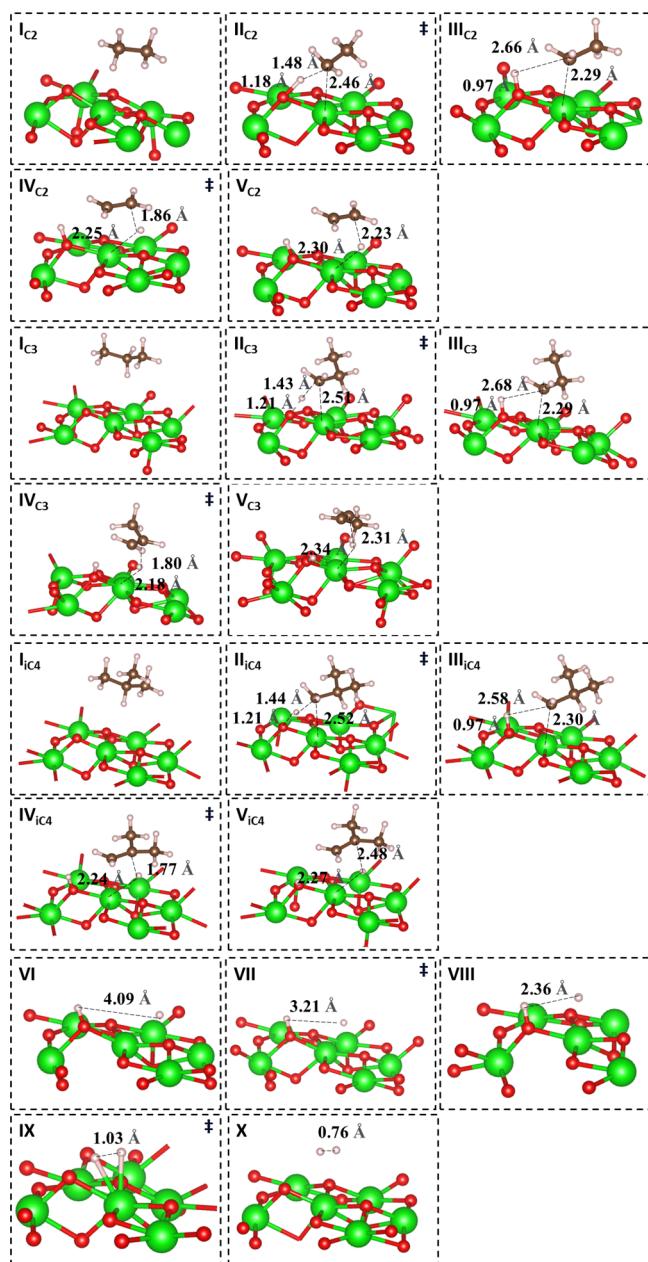
$\text{C}_n\text{H}_{2n+2}$ binding (n is the number of carbon atoms in the alkane) to form an undissociated bound alkane (species I), heterolytic cleavage of a terminal C–H bond (mediated by the TS depicted as species II⁺) to form bound protons and alkyl carbanions (species III), β -H-elimination via TS depicted as species IV⁺ to form gaseous C_nH_{2n} and H^-H^+ pairs bound at Zr–O site pairs (V), desorption of C_nH_{2n} (species VI), migration of H^- (species VII) to form a closely coordinated H^-H^+ (species VIII), the reaction of H^- and H^+ (species IX) to form H_2 (species X), and its subsequent desorption to recover the bare Zr–O site pair (XI).

The reaction coordinate diagrams in Figure 6 show the enthalpy (top) and free energy (bottom) (electronic energies, enthalpies, and free energies also shown in Table 3; calculation methods are described in section 2.3) for each elementary step and intermediate in the dehydrogenation of C_2H_6 , C_3H_8 , and $i\text{C}_4\text{H}_{10}$ alkanes and for the adsorption and first C–H abstraction step from CH_4 (note that subsequent steps involve the formation of gaseous methylene species, a step that is energetically infeasible). The kinetic relevance of a given step is dictated by the relative heights of the free energy barriers; those barriers that are higher are more kinetically relevant, making reaction coordinate diagrams a visual tool in such assessments.

Computation of these free energies requires entropies for each step gaseous species and their surface bound analogs. Due to the failure of harmonic oscillators in describing low frequency modes in vibrational assessments, estimations of surface entropies are frequently derived from gaseous analogs (section 2.3). The entropies of gaseous species, and thus their bound analogs, depend on the prevalent pressure of the gas, where deviations from a standard state of 1 bar arise directly from the translational entropy and the gaseous entropy gain compared to $S_{\text{trans},1\text{bar}}$ is $R \cdot \ln(P \cdot P^{-1}_{1\text{bar}})$. Due to these strong pressure effects in entropy, the prevalent pressure of products and reactants impacts the free energy along the reaction coordinate. This is most evident by observing the free energy of reaction at standard conditions of 1 bar (the final state (XI) in the reaction coordinate diagram depicted in Figure S13 for standard free energies), where free energies of reaction are positive, indicative of a preference for hydrogenation in spite of experimental measurements of dehydrogenation. This contrast arises from the gaseous pressures in the reactor, which are not the typical standard state pressures (1 bar of alkane, alkene, and H_2 each at 723 K) where hydrogenation is thermodynamically favored. Selection of gaseous species pressures commensurate with those of reactants and products in the reactor (i.e., 1 bar alkane, 0.01 bar H_2 , and 0.001 bar alkene) enables analysis of the free energy of alkane dehydrogenation reactions for conditions relevant to catalysis. This free energy profile, shown in Figure 6b, depicts negative free energies of reaction under these conditions, which is consistent with experimental assessments.

The lower product pressure in the reactor not only provides the favorable thermodynamics that enable dehydrogenation, but also results in entropy gains for product-like TS and intermediates and desorption steps in comparison to the standard condition of 1 bar (see Figure S13 for reaction coordinate diagrams at 1 bar of all species). This entropy gain manifests as lower free energies in the later steps of the reaction coordinate where products have been formed and when they desorb, making the pathway increasingly favorable as product pressures decrease. This section more thoroughly

Table 3. DFT Energies of C_2H_6 , C_3H_8 , and iC_4H_{10} Dehydrogenation on $m\text{-ZrO}_2(\overline{111})$ ^a


Structure	Description	ΔE (kJ mol ⁻¹)	ΔH (kJ mol ⁻¹)	ΔS (J mol ⁻¹ K ⁻¹)	ΔG (kJ mol ⁻¹)
0	$ZrO_{2,\text{bare}}$	0	0	0	0
I _{C1}	$ZrO_{2,\text{CH}4^*}$	-18	-24	-96	45
II [‡] _{C1}	$(ZrO_{2,\text{CH}3^*\text{-H}^*})^\ddagger$	88	77	-162	194
III _{C1}	$ZrO_{2,\text{CH}3^*\text{-H}^*}$	+40	+42	-133	+138
0	$ZrO_{2,\text{bare}}$	0	0	0	0
I _{C2}	$ZrO_{2,\text{C}2\text{H}6^*}$	-28	-22	-59	+21
II [‡] _{C2}	$(ZrO_{2,\text{C}2\text{H}5^*\text{-H}^*})^\ddagger$	88	84	-138	184
III _{C2}	$ZrO_{2,\text{C}2\text{H}5^*\text{-H}^*}$	+32	+33	-129	+127
IV [‡] _{C2}	$(ZrO_{2,\text{C}2\text{H}4^*\text{-2H}^*})^\ddagger$	131	116	-89	180
V _{C2}	$ZrO_{2,\text{C}2\text{H}4^*\text{-2H}^*}$	+127	+114	-88	+177
VI _{C2}	$ZrO_{2,\text{C}2\text{H}4\text{-2H}^*}$	+168	+159	49	+124
VII [‡] _{C2}	$(ZrO_{2,\text{C}2\text{H}4\text{-2H}^{**}})^\ddagger$	198	184	42	153
VIII _{C2}	$ZrO_{2,\text{C}2\text{H}4\text{-2H}^{**}}$	+183	+175	52	+137
IX [‡] _{C2}	$(ZrO_{2,\text{C}2\text{H}4\text{-H}2^*})^\ddagger$	221	195	46	162
X _{C2}	$ZrO_{2,\text{C}2\text{H}4\text{-H}2^*}$	+157	+146	87	+83
XI _{C2}	$ZrO_{2,\text{C}2\text{H}4\text{-H}2}$	+171	+152	247	-27
0	$ZrO_{2,\text{bare}}$	0	0	0	0
I _{C3}	$ZrO_{2,\text{C}3\text{H}8^*}$	-36	-44	-80	14
II [‡] _{C3}	$(ZrO_{2,\text{C}3\text{H}7^*\text{-H}^*})^\ddagger$	90	78	-149	185
III _{C3}	$ZrO_{2,\text{C}3\text{H}7^*\text{-H}^*}$	+28	+27	-121	+115
IV [‡] _{C3}	$(ZrO_{2,\text{C}3\text{H}6^*\text{-2H}^*})^\ddagger$	107	96	-66	144
V _{C3}	$ZrO_{2,\text{C}3\text{H}6^*\text{-2H}^*}$	+102	+92	-68	+141
VI _{C3}	$ZrO_{2,\text{C}3\text{H}6\text{-2H}^*}$	+156	+147	90	+81
VII [‡] _{C3}	$(ZrO_{2,\text{C}3\text{H}6\text{-2H}^{**}})^\ddagger$	184	168	87	105
VIII _{C3}	$ZrO_{2,\text{C}3\text{H}6\text{-2H}^{**}}$	+168	+160	92	+93
IX [‡] _{C3}	$(ZrO_{2,\text{C}3\text{H}6\text{-H}2^*})^\ddagger$	204	180	76	125
X _{C3}	$ZrO_{2,\text{C}3\text{H}6\text{-H}2^*}$	+145	+130	135	+32
XI _{C3}	$ZrO_{2,\text{C}3\text{H}6\text{-H}2}$	+156	+136	254	-47
0	$ZrO_{2,\text{bare}}$	0	0	0	0
I _{C4}	$ZrO_{2,\text{C}4\text{H}10^*}$	-40	-43	-60	1
II [‡] _{C4}	$(ZrO_{2,\text{C}4\text{H}9^*\text{-H}^*})^\ddagger$	82	73	-116	157
III _{C4}	$ZrO_{2,\text{C}4\text{H}9^*\text{-H}^*}$	+23	+28	-98	+99
IV [‡] _{C4}	$(ZrO_{2,\text{C}4\text{H}8^*\text{-2H}^*})^\ddagger$	96	85	-63	130
V _{C4}	$ZrO_{2,\text{C}4\text{H}8^*\text{-2H}^*}$	+81	+77	-47	+110
VI _{C4}	$ZrO_{2,\text{C}4\text{H}8\text{-2H}^*}$	+145	+154	116	+70
VII [‡] _{C4}	$(ZrO_{2,\text{C}4\text{H}8\text{-2H}^{**}})^\ddagger$	176	175	112	94
VIII _{C4}	$ZrO_{2,\text{C}4\text{H}8\text{-2H}^{**}}$	+160	+167	118	+82
IX [‡] _{C4}	$(ZrO_{2,\text{C}4\text{H}8\text{-H}2^*})^\ddagger$	199	187	102	114
X _{C4}	$ZrO_{2,\text{C}4\text{H}8\text{-H}2^*}$	+135	+137	161	+21
XI _{C4}	$ZrO_{2,\text{C}4\text{H}8\text{-H}2}$	+149	+135	279	-67

^aAt 723 K for 1 bar reactants and 0.01 bar H_2 and 0.001 bar alkene of products.

analyzes this reaction coordinate diagram (Figure 6) and discusses it in the context of standard state free energies (Figure S13).

The alkane dehydrogenation process is depicted in Scheme 1 and energies for each species along the reaction coordinate are listed in Table 3. The corresponding reaction coordinate diagram is shown in Figure 6 and DFT-derived structures for which energies are reported are depicted in Figure 7. C_2H_6 reactions involve the weak binding of undissociated reactants at $Zr\text{-O}$ site pairs ($\Delta H = -22$ kJ mol⁻¹, $\Delta G_{723\text{K}} = + 21$ kJ mol⁻¹, structure I_{C2}, where subscript Cn refers to the step for the alkane with carbon number n , C_nH_{2n+2}). In structure I_{C2}, one of the two CH_3 groups interacts weakly with the O-atom (Figure 7), while the other CH_3 group in C_2H_6 shows no evidence of interactions with the surface and is directed away from the surface, consistent with weak binding and with the low reactant coverages and essentially bare surfaces evidenced by dehydrogenation rates that depend linearly on alkane

pressures for all reactants. C-H activation can occur at one of the two terminal C-atoms to form either a hydride and alkyl carbenium ion or a proton and an alkyl carbanion, with the corresponding anionic and cationic fragments interacting with the Zr and O centers, respectively. Our DFT computations show that that proton abstraction is favored over hydride abstraction routes in the first C-H activation step for C_3H_8 ($\Delta E^\ddagger: 90$ vs 213 kJ mol⁻¹). Proton abstraction from C_2H_6 occurs from structure I_{C2} via the TS II_{C2}[‡] structure to form an ethyl carbanion bound at the Zr center and a proton at the vicinal O-atom (III_{C2}), as expected from heterolytic cleavage. H_2 dissociation has been shown to occur heterolytically on ZrO_2 sites by infrared spectroscopy ($m\text{-ZrO}_2$ and $t\text{-ZrO}_2$),⁶⁰ exchange reactions ($m\text{-ZrO}_2$),¹³ and theory (ZrO_2 clusters).⁶¹ The $Zr\text{-O}$ bond lengthens (from 2.005 to 2.258 Å) as the C-H bond is cleaved in this step. The free energy of formation of structure II_{C2}[‡] from gaseous C_2H_6 and a bare site is 184 kJ mol⁻¹ and the corresponding formation enthalpy is 84 kJ

Figure 7. Ball and stick representations of structures from the reaction coordinate diagram showing the reaction of alkanes C_2H_6 (C_2), C_3H_8 (C_3), and iC_4H_{10} (iC_4) in dehydrogenation on $m\text{-ZrO}_2$ (111). Zr: green; O: red; H: white; C: brown. Note that the models for structures VI and higher are the same for all alkanes since they involve common H-migration and reactions steps, but the energies (Table 3) differ due to contrasting alkene species.

mol^{-1} . The bound C_2H_5 carbanion-proton pair has an enthalpy of formation of $+33 \text{ kJ mol}^{-1}$ and a free energy of formation of $+127 \text{ kJ mol}^{-1}$ from a bare Zr–O surface pair and a gaseous C_2H_6 molecule. These proton and anion products of C–H activation events are stabilized via electrostatic interactions with each other and with the LAB site pair, enabling their formation during heterolysis. As such, alternative mechanisms involving the migration of these cation–anion pairs to other Zr and O sites necessitate that they migrate in concert to a different site but remain within interacting distances to benefit from the electrostatic stabilization. Such migration would involve moving the cation–anion pair to Zr–O pairs, where

they would be less stable than on the most competent C–H activation sites at which they formed. The strict requirement of comigration to a weaker-binding site limits the viability of a site migration-involved mechanisms.”

The second C–H activation step involves β -hydride abstraction from the intact CH_3 in the C_2H_5 carbanion (III_{C_2}) via TS $\text{IV}_{\text{C}_2}^{\ddagger}$ structures that form a product state, species V_{C_2} , comprised of a weakly bound alkene and a proton–hydride pair on the surface. The structure of TS $\text{IV}_{\text{C}_2}^{\ddagger}$ resembles that of species V_{C_2} , which is indicative of a very late TS for the β -hydride elimination elementary step. Specifically, the two structures exhibit comparable Zr–O bond lengths (2.274 and 2.272 Å for $\text{IV}_{\text{C}_2}^{\ddagger}$ and V_{C_2} , respectively), and the alkene product has been nearly formed at this late TS (C–C bond length of 1.37 vs 1.35 Å, respectively). The free energy of formation of this transition state from gaseous alkane and a bare Zr–O pair is 180 kJ mol^{-1} and its formation enthalpy is 116 kJ mol^{-1} , which is similar to those of product state species V_{C_2} ($\Delta G = +177 \text{ kJ mol}^{-1}$, $\Delta H = +114 \text{ kJ mol}^{-1}$, Table 3). The abstracted hydride resides in a hollow between Zr_1 and Zr_2 atoms (Figure 1).

The species formed by C_2H_4 desorption (species VI_{C_2}) gains entropy ($\Delta S: 49 \text{ J mol}^{-1} \text{ K}^{-1}$) by forming a freely translating and rotating gaseous species, leading to a decrease in free energy from its precursor species V_{C_2} ($\Delta H = +159 \text{ kJ mol}^{-1}$, $\Delta G_{723\text{K}} = +124 \text{ kJ mol}^{-1}$, Table 3). The elementary step involves the migration of the H^- formed to the atop position of the Zr_2 atom bound to the O-atom that stabilizes the proton ($\text{VII}_{\text{C}_2}^{\ddagger}$, $\Delta H^{\ddagger} = 184 \text{ kJ mol}^{-1}$, $\Delta G^{\ddagger} = 153 \text{ kJ mol}^{-1}$) to form a vicinal proton–hydride pair (VIII_{C_2} , $\Delta H = +175 \text{ kJ mol}^{-1}$, $\Delta G = +137 \text{ kJ mol}^{-1}$, Table 3). This pair combines ($\text{IX}_{\text{C}_2}^{\ddagger}$, $\Delta H^{\ddagger} = 195 \text{ kJ mol}^{-1}$, $\Delta G^{\ddagger} = 162 \text{ kJ mol}^{-1}$) to form a bound H_2 molecule (X_{C_2} , $\Delta H = +146 \text{ kJ mol}^{-1}$, $\Delta G = +83 \text{ kJ mol}^{-1}$) that desorbs, thus restoring the bare Zr–O pair and completing a catalytic turnover (species XI_{C_2} , $\Delta H = +152 \text{ kJ mol}^{-1}$, $\Delta G = -27 \text{ kJ mol}^{-1}$).

The first C–H abstraction in C_2H_6 (from either CH_3 group) forms a surface proton and a bound carbanion with an enthalpy barrier (84 kJ mol^{-1}) that is similar to that experimentally observed (shown for ethane as $84 \pm 7 \text{ kJ mol}^{-1}$). The second C–H abstraction TS ($\text{IV}_{\text{C}_2}^{\ddagger}$) exhibits a slightly higher barrier in enthalpy (116 kJ mol^{-1}), than that of the first C–H cleavage (for C_2H_6 , Table 3), but a slightly lower free energy barrier (180 kJ mol^{-1}). The reaction coordinate diagram in Figure 6 shows enthalpy barriers for H_2 migration and combination that are larger than for both C–H activation barriers and measured ones, a finding that seems inconsistent with the kinetic relevance of the C–H activation steps. This is a consequence of endothermic reactions whose energy must increase to that of products along the reaction coordinate; enthalpy barriers obtained by visual inspection of the reaction coordinate diagram could never be smaller than the overall reaction energy in spite of the low measured barriers. The kinetic relevance of a step is determined, however, by the relative activation free energies among all steps along a reaction coordinate, not the enthalpy of a given TS. Accordingly, measured activation barriers from Arrhenius treatments of rate data reflect the enthalpy barrier for the step with the highest free energy along the overall reaction coordinate. Visual inspection of the free energy diagram (Figure 7) indeed shows that H_2 recombination and desorption show lower free energy barriers than those for C–H activation steps because of the significant entropy gains upon desorption. Given this

inspection, it is the first C–H activation that is kinetically relevant for C_2H_6 reactants, but the second C–H activation barrier is similar. Analysis of C–H activation for other alkanes provides further insights into the free energy landscape of the reaction coordinates in alkane dehydrogenation.

Enthalpies and free energies were also examined for CH_4 (up to the formation of the methyl carbanion), C_3H_8 , and iC_4H_{10} dehydrogenation catalytic sequences. Figure 6 shows DFT-derived enthalpies and free energies for CH_4 , C_2H_6 , C_3H_8 , and iC_4H_{10} dehydrogenation at the $Zr_{II}-O$ site pair on $m-ZrO_2(\bar{1}11)$. The relevant structures of the bound species involved in the C_3H_8 and iC_4H_{10} reactions are depicted in Figure 7. These C–H, O–H, C–Zr, and H–Zr bond lengths are similar at each step among alkanes, suggesting that they can react on Zr–O site pairs through similar pathways. In contrast with C_2H_6 , C_3H_8 and iC_3H_{10} molecules have nonterminal C–H bonds that must be activated at some stage along the reaction coordinate in completing a dehydrogenation turnover. Proton abstraction from terminal $-CH_3$ groups occurs with a slightly lower free energy barrier (186 vs 190 kJ mol⁻¹) than from parallel pathways from methylene $-CH_2-$ groups in C_3H_8 dehydrogenation on the $m-ZrO_2(\bar{1}11)$ surface. The enthalpy of formation of the TS for proton abstraction at the CH_2 group in C_3H_8 is 86 kJ mol⁻¹, a value similar to that for abstraction from the CH_3 group (78 kJ mol⁻¹). The enthalpy of formation for the C–H activation TS for CH_4 is similar to that for C_2H_6 and C_3H_8 at 77 kJ mol⁻¹; these observations indicate that the barrier for proton abstraction is essentially insensitive to the type of C–H bond cleaved in forming a proton and an alkyl carbanion at Zr–O site pairs. Also, the enthalpy barrier to form the β -hydride elimination TS in a subsequent step is lower by 24 kJ mol⁻¹ from the nC_3H_7 anion formed via terminal proton abstraction than that from iC_3H_7 carbanions, indicative of a preference for dehydrogenation sequences that proceed via nC_3H_7 intermediates.

The reaction enthalpy to bind alkanes on ZrO_2 surfaces is more negative for larger alkanes (-24 kJ mol⁻¹ for CH_4 , -25 kJ mol⁻¹ for C_2H_6 , -44 kJ mol⁻¹ for C_3H_8 ; -43 kJ mol⁻¹ for iC_4H_{10}); these differences predominantly reflect van der Waals interactions that are also responsible for their condensation as liquids. The concomitant loss of entropy upon adsorption leads, however, to positive adsorption free energies for all alkanes, consistent with the low coverages prevalent during steady-state catalysis at 700–900 K. The subsequent abstraction of a proton at the methyl C-atom (C^3) in these alkanes involves a similar TS structure (II^{\ddagger}_{nC} , Figure 7 and Table 3) for these alkanes [$nC_xH_{2x+1}\cdots Zr-O\cdots H$][†]. The enthalpies of formation of this C–H cleavage TS from the gaseous alkane and bare surface in structure II^{\ddagger} are similar among alkanes (84, 84, 78, and 76 kJ mol⁻¹, with increasing alkane size from CH_4 to iC_4H_{10}) consistent with the similar values of their experimentally measured activation barriers (Figure 4).

The formation enthalpies of the bound carbanion formed in Species III [$nC_xH_{2x+1}\cdots Zr\cdots O-H$, III_{nC}] decreased slightly from $+33$ kJ mol⁻¹ to $+27$ kJ mol⁻¹ with increasing size (C_2H_6 to iC_4H_{10}). Deprotonation typically becomes less endothermic with alkane size for their gaseous counterparts ($+1757$, $+1741$, and $+1726$ kJ mol⁻¹ for C_2H_4 , C_3H_8 , and iC_4H_{10} ³⁶). Born–Haber thermochemical cycles (Figure S15) demonstrate that the large differences between heterolytic dissociation energies of an alkane (or H_2 , H_2O) into gaseous or bound ions reflects the strong stabilization of the proton-carbanion by ZrO_2 and

by electrostatic interactions between the two fragments enabled by their vicinal locations at the Zr and O atoms.⁶²

β -Hydride elimination from the [$nC_xH_{2x+1}\cdots Zr\cdots O-H$][†] carbanion is mediated by TS structure IV^{\ddagger}_{nC} , which forms a weakly adsorbed alkene and a bound proton-hydride pair, $C_xH_{2x}\cdots H\cdots Zr\cdots O\cdots H$ (a) ($\Delta H^{\ddagger} = 96$ kJ mol⁻¹, $\Delta G^{\ddagger} = 144$ kJ mol⁻¹ for C_3H_8 and $\Delta H^{\ddagger} = 85$ kJ mol⁻¹, $\Delta G^{\ddagger} = 130$ kJ mol⁻¹ for iC_4H_{10}). These TS transition state structures for β -hydride elimination of each alkyl-carbanion [$nC_xH_{2x}\cdots H\cdots Zr\cdots O-H$][†](a) resemble their respective product states (bound alkenes and hydride proton pair (V_{nC}), $\Delta H = +92$ kJ mol⁻¹ for C_3H_8 and $\Delta H = +77$ kJ mol⁻¹ for iC_4H_{10} , Figure 7), as also shown for C_2H_6 reactants. The consequent late character of this β -hydride elimination TS (Figure 7, Table 3) is also evident from its structural resemblance to its product state. The formation free energy of this [$nC_xH_{2x+1}\cdots H\cdots Zr\cdots O-H$][†](a) TS from a gaseous alkane and a bare site decreases with increasing alkane size C_2H_6 to iC_4H_{10} (180, 144, and 130 kJ mol⁻¹, respectively; Figure 7, Table 3). The hydride in Structure VI bridges Zr_I and Zr_{II} atoms, as also observed for C_2H_6 (Figure 7) and the subsequent step comprising H_2 formation and desorption are analogous to that of C_2H_6 dehydrogenation (Figure 7).

Activation enthalpies for the DFT-derived first C–H abstraction TS (84 kJ mol⁻¹) are similar among alkanes and consistent with experiments (84 ± 3 kJ mol⁻¹); however, it is free energy barriers that dictate the kinetic-relevance of steps. These DFT-derived formation free energies for C–H abstraction TS suggest that the first proton abstraction from terminal $-CH_3$ groups is the predominant kinetically relevant step for C_2H_6 , C_3H_8 , and iC_4H_{10} dehydrogenation reactions, based on the magnitude of the barrier for each C–H abstraction step alone. Though the kinetically relevant step determined by free energies at reaction conditions (Figure 7) is clear, it is noted that those determined by standard state free energies are not as definitive for one of the studied alkanes, with the free energy barriers (at 1 bar, Figure S13) of the first C–H activation in C_2H_6 dehydrogenation being lower than that determined from the second C–H activation (184 vs 213 kJ mol⁻¹, respectively). This apparent disparate finding may be explained by the assumptions made in computing the ΔS values, namely, i) the relevant pressure of product and reactant molecules, ii) the method selected to circumvent DFT inadequacies in assessing entropy contributions from low-frequency modes of bound intermediates and transition states, and iii) the use of Zr–O structural models that do not account for the requisite coordinative unsaturation inferred from trends in areal site densities (discussed in section 3.6)

The prevailing pressure of gaseous species (potential source i) is a factor that determines the entropy of gaseous molecules (see eq S10 and discussion above). Comparison of free energies at relevant gas phase pressures (Figure 7 and Figure S14 at 873 K) and 1 bar (Figure S13) shows that the kinetic relevance of steps can depend, in part, on the conditions of the reaction (T , P , etc.) and which side of thermodynamic equilibrium the gas phase resides. This results from product pressures that, when low as during the reported catalytic assessments, decrease the free energy for product-like intermediates and TS (i.e., β -hydride abstraction in TS IV^{\ddagger}). Such relevant pressures were assumed to be similar for all alkanes (Figure 7), but C_2H_6 dehydrogenation necessarily had lower C_2H_4 pressures by virtue of lower rates under similar reactor conditions and more strict thermodynamic constraints.

Table 4. Orders of Magnitude (10^x) of χ (Degree of TOF Control) for Each Structure Computed from the Energetic Span Model Using Free Energies Computed from DFT^a

Alkane\Step	0	I	II [‡]	III	IV [‡]	V	VI	VII [‡]	VIII	IX [‡]	X	XI
C ₂ H ₆	-5	-6	-1	-3	-2	-4	-4	-5	-4	-3	-9	-3
C ₃ H ₈	-6	-7	-1	-2	-4	-6	-6	-6	-6	-5	-8	-4
i-C ₄ H ₁₀	-8	-8	-1	-3	-3	-14	-11	-6	-7	-4	-5	-6

^aTable 3, 723 K, 1 bar alkane, 0.01 bar H₂, and 0.001 bar alkene.

As such, the more disparate reactant and product pressures evident for C₂H₆ dehydrogenation reinforces consistency in the relative kinetic-relevance of the two C–H activation steps with the other alkanes.

The selection of entropy treatment to accommodate the inaccuracies of harmonic oscillators (potential source ii) also impacts the resulting free energies, particularly at the relatively high temperatures of alkane dehydrogenation (723 K). These effects are discussed in detail in **Supporting Information section S9**. The selection of vibrational frequency cutoff for replacement with a fraction of the gas phase entropy (see reaction coordinate diagrams and summary table in **Supporting Information section S10**) can enable a greater propensity for overestimation of free energies if insufficiently strict (e.g., II[‡] and IV[‡] are 209 and 250 kJ mol⁻¹, respectively with a cutoff of 50 cm⁻¹). In contrast, estimating the entropy loss as simply 0.3 of the gas phase S_{trans} (irrespective of vibrational frequencies) results in a significant decrease in free energy that favors steps after alkene desorption, resulting in a decrease in free energy of later steps of the reaction coordinate. These results underscore the potential ranges of free energy computed with different approximations for the entropy of surface bound intermediates and TS, with direct implications for discerning the kinetically relevant TS.

To quantitatively evaluate the kinetic significance of each step, we evaluated the energy landscape systematically using the Energetic Span Model.⁶³ This model uses energies for intermediates and TS to evaluate the energetic states, their relative energies, and the sensitivity of the TOF to changes in the energies to evaluate which species are most abundant on a catalytic surface and which states are TOF-controlling structures. In this model, the TOF of the reaction coordinate is computed by:

$$\text{TOF} = \frac{k_B T}{h} \frac{e^{-\Delta G_r/(RT)} - 1}{\sum_{i,j=1}^N e^{((T_i - I_j - \delta G_{ij})/(RT))}} \quad (5)$$

where ΔG_r is the free energy of the reaction, T_i is the energy of TS i , I_j is the energy of intermediate j , N is the number of intermediates and TS, and δG_{ij} is ΔG_r for $i > j$ or 0 if $i < j$. Using the free energies computed for C₃H₈ dehydrogenation (Figure 7, Table 4), the Energetic Span Model predicts a net TOF value of 2000 h⁻¹. This approximation, using free energies determined for approximate reactor conditions (1 bar alkane, 0.01 bar H₂, 0.001 bar alkene) agrees well with those site-normalized forward rates for C₃H₈ dehydrogenation at 723 K and 0.1 bar C₃H₈ (200 h⁻¹, Figure 4), acknowledging first-order kinetics with C₃H₈ pressure and $\eta < 0.1$ for which net rates are slightly smaller. It is cautioned though that the magnitude of the TOF in this model is highly sensitive to the reaction free energy and determined by which side of equilibrium the system resides. As such, the derived TOF values should be used with caution for reactions which are sensitive to the approach to equilibrium. To provide insights

into the kinetic relevance of the reaction steps in alkane dehydrogenation, we compare the degree of TOF control (χ) for each step to assess the significance by assessing the derivative of TOF with respect to the energy of each step (E_i):

$$X_{\text{TOF},i} = \left| \frac{1}{\text{TOF}} \frac{\delta \text{TOF}}{\delta E_i} \right| \quad (6)$$

The results of this analysis, using central difference method, are presented in Table 4 where the order of magnitude of χ (10^x) are shown for each structure for C₂H₆, C₃H₈, and iC₄H₁₀. Larger values (or less negative powers) indicate that the step has a higher degree of TOF control, which can be interpreted as increasing kinetic relevance. As stated previously, ΔG_r has a significant impact on the TOF (step XI) for each alkane, but with decreasing significance for larger alkanes (-3, -4, and -6 for C₂H₆, C₃H₈, and iC₄H₁₀, respectively) where thermodynamics are more favorable for dehydrogenation. The results show that the TOF-determining step for alkane dehydrogenation is generally II[‡] (methyl proton abstraction, power of -1 for all alkanes), with IV[‡] (β -hydride elimination) having less relevance to kinetic control (powers of -2 to -3). The definitive relevance of II[‡] is more evident for larger alkanes, where thermodynamics are less constrained under the conditions of these free energy computations (723 K, 1 bar of C₂H₆, 0.01 bar of H₂, and 0.001 bar). This is further evident by the single order of magnitude difference between II[‡] and IV[‡] for C₂H₆ dehydrogenation. These results support our designation of proton abstraction from the terminal -CH₃ groups as kinetically relevant for C₂H₆, C₃H₈, and iC₄H₁₀.

3.6. Further Considerations to ZrO₂ Active Site Models and Implications on Computed Barriers. In light of the apparent minority of Zr–O pairs as active sites on the catalyst, likely present at edges and corners, and the use of stoichiometric planar surfaces to assess the reaction coordinate, this section considers the adequacy of the specific surface LAB pairs used in this study in describing the most competent active sites for stabilizing TS, in particular for the β -hydride elimination products (species V) that directly influence the TS IV[‡] barrier. It also considers the (implausible) involvement of reduced Zr³⁺ centers and the suitability of stoichiometric extended surfaces as structural models.

The β -hydride elimination TS (structure IV[‡]) is nearly identical in energy and structure to the product state ($\Delta G_{723K}^{\ddagger}$: 212 kJ mol⁻¹ for IV[‡]; ΔG_{723K} : 201 kJ mol⁻¹ for V, see Table 3 C₂H₆). This product state consists of a weakly bound alkene interacting with an H⁺–H⁻ pair. Consequently, surfaces (or site structures) that bind this pair more stably would lead to lower activation barriers for β -hydride elimination. The energies of these H⁺–H⁻ pairs were examined over diverse positions at *m*-ZrO₂(111) surfaces to identify their most stable locations (a visual representation of the local minima for H⁻ position is included as Figure S17). Among these locations, the

configuration depicted as structure VI (Figure 7) was the most stable one on $m\text{-ZrO}_2(\overline{1}11)$ surfaces, indicating that barriers for β -hydride elimination in IV^+ are the lowest determined for such structures. Quantum tunneling effects may cause barriers to be lower than DFT-derived values, but they would also affect the proton abstraction first step for which DFT methods give barriers similar to those measured. Tunneling is typically most consequential at near ambient temperatures, where the enthalpic benefits are essential because of inaccessible thermal barriers, and entropy penalties imposed by precise orbital arrangements are less influential in determining free energies (due to low temperatures). They also lead to very large normal kinetic isotope effects (10 – 100),⁶⁴ in contrast with the modest $\text{C}_3\text{H}_8/\text{C}_3\text{D}_8$ kinetic isotope effects measured for propane dehydrogenation in this study ($k_{\text{H}}/k_{\text{D}} = 2.2$).

The computed free energy barrier (1 bar) for the β -hydride elimination TS for C_2H_6 is higher than expected from experimental assessments that indicate that proton abstraction is the sole kinetically relevant step. It was shown above that product pressures and entropy treatments influence these barriers, but such high barriers may also reflect the ZrO_2 surface structure models used, which do not capture the binding properties of Zr–O pairs with lower Zr coordination. Previous studies on $m\text{-ZrO}_2$ have ascribed special reactivity properties to coordinatively unsaturated sites formed either by removal of lattice O-atoms (via treatments in CO ²⁰ or H_2 that form Zr^{3+})⁴⁷ or through the formation of structural O-vacancies by substituting Zr^{4+} with Ru or Cu atoms.¹² DFT-derived formation energies of O-vacancies on ZrO_2 are extremely high (e.g., 580 kJ mol^{-1} on the 101 lattice plane).⁶⁵ Such energies may be lower on edge and corner sites in small nanoparticles ($\sim 300 \text{ kJ mol}^{-1}$), but would still require very high temperatures and $\text{H}_2/\text{H}_2\text{O}$ ratios ($> 10^{22}$) unattainable in the contacting fluid. Our computations for the potential reduction of Zr (by Bader charge and density of states, see Supporting Information section S10), refute the presence of reduced Zr species and confirm attributions of reactivity to LAB site pairs at stoichiometric surfaces. Treatments in CO (at 823 K) or H_2 (at 823 K) were reported with small rate enhancements (less than 10-fold), contrasting the larger effects reported here after treatments in DME (>100-fold) at much lower temperatures (723 K). The effects of CO are likely to arise from its role as a chemical desiccant (to form CO_2 and H_2 , in the analog of water-gas shift reactions); such reactions require higher temperatures than dehydroxylation by DME and they form alternate titrants (CO_2), albeit ones that bind more weakly than H_2O at Zr–O pairs.

The absence and lack of kinetic consequences of Zr^{3+} centers was confirmed by comparing rate enhancements induced by exposing samples to He , H_2 (5 kPa), and DME at 723 K; the first-order dehydrogenation rate constants at 723 K (shown in Figure S9) are about 150 times larger after DME than He or H_2 treatments (which exhibited a similar rate constant of 0.9 times the rate constant after He treatment). Even H_2 treatments at 823 K led to rates comparable to those of He treatments. H_2 uptakes upon treatment of $m\text{-ZrO}_2$ in H_2 up to 893 K (Figure S12) were consistent with H_2 adsorption⁶⁶ and much smaller than the measured maximum density of active sites (from H_2O titration, $< 5.4 \mu\text{mol g}^{-1}$ or 0.02 H_2 molecules nm^{-2} compared to $0.56 \text{ sites nm}^{-2}$, Figure S2). Impurity Hf species (atomic radii 225 nm) were also considered as sources of active sites due to lattice distortions

(Zr radii: 160 nm) and their ubiquitous presence in Zr sources (~2% Hf). Hf was supplemented in the synthesis of zirconate catalysts and was found to have no effect on C_3H_8 dehydrogenation rates, precluding the presence of Hf -induced formation of active LAB site pairs (Supporting Information section S5).

The experimental evidence supports the abstraction of a proton from methyl C–H bonds as the sole kinetically relevant step in alkane dehydrogenation reactions. DFT-derived energies show conclusive agreement with this for light alkane dehydrogenation reactions. C_2H_6 dehydrogenation at standard conditions, however, is less conclusive due to the more similar free energies barriers of the first and second C–H activation steps. Such unequivocal discernment may arise from structural models that are underpinned by direct experimental observations of minority surface structures on polycrystalline ZrO_2 powders.

$m\text{-ZrO}_2(\overline{1}11)$ surfaces account for one of several low-index planes exposed at ZrO_2 crystals. H_2O titrations give a quantity of uniquely active sites (0.56 nm^{-2} , Supporting Information section S3) that is much smaller than the number of Zr–O pairs at low index planes of $m\text{-ZrO}_2$ ($8\text{--}12 \text{ nm}^{-2}$).⁶⁷ Sites of lower coordination bind H_2O more strongly and are thus most prone to remain blocked after thermal treatments (titrations data in Supporting Information section S3). Alkane dehydrogenation active site densities on $m\text{-ZrO}_2$ are higher for smaller crystallites¹⁹ which expose a proportionately larger fraction of low-coordination edge and corner sites at surfaces; these features are not inherent in structural models consisting of flat surfaces. Such sites may possess unique geometric arrangements, particularly for the second Zr -atom that is required to stabilize the β -hydride elimination TS, thus preferentially stabilizing this TS over that mediating the first C–H activation step and eliminating any uncertainty in the barrier for TS IV^+ for C_2H_6 dehydrogenation. Model low index planar surfaces do not account for steps and kinks that expose low-coordination ZrO_2 on practical catalysts, which directly impact the binding of molecules and potentially the kinetically relevant steps on Zr–O site pairs, making the binding of H^+ and H^- pairs a potential descriptor of reactivity or determining the rate limiting step. Such sites must reflect modest enthalpy barriers of the kinetically relevant TS (84 kJ mol^{-1}) and show the weak binding of surface species that results in the undetectable coverage of alkane derived species in the heterolytic C–H activation that mediates alkane dehydrogenation on LAB site pairs.

4. CONCLUSIONS

Kinetic assessments of alkane dehydrogenation rates on $m\text{-ZrO}_2$, made possible by DME cleaning protocols to expose the active Lewis acid–base pairs, were used in conjunction with theoretical modeling of the reaction pathway on a simulated $m\text{-ZrO}_2$ surface. The data and mechanistic analysis show that dehydrogenation of C_2H_6 , C_3H_8 , $n\text{C}_4\text{H}_{10}$, and $i\text{C}_4\text{H}_{10}$ involves kinetically relevant cleavage of terminal C–H bonds via unimolecular transition states stabilized by interactions with Zr–O LAB site pairs that remain essentially uncovered during steady-state catalysis. The heterolytic C–H bond activation forms a surface-stabilized carbanion and proton pair that undergoes subsequent β -hydride abstraction to form the product alkene and H_2 . The predicted barriers for the first proton abstraction step for each alkane are similar, consistent with measured barriers for dehydrogenation among alkanes

(84 kJ mol⁻¹). Differences in the heterolytic dehydrogenation reactivity of alkanes arise from differences in the entropy of activation for each molecule, apparently due to larger residual mobility of adsorbed alkane-derived species with longer, or more, fragments which are not directly bound to the surface. These fragments retain mobility, resulting in higher dehydrogenation rate constants. LAB active site pairs on *m*-ZrO₂ that activate C–H bonds in alkane molecules represent only a small fraction of surface Zr–O pairs and are ascribed to the low-coordination edge and corner sites. The reactivity of *m*-ZrO₂ is invariant to reductive treatments, given the nonreducible nature of ZrO₂, but is strongly dependent on the crystallite size. This work discloses mechanistic assessment for heterolytic C–H activation on the LAB site pairs of a *m*-ZrO₂ whose active Zr–O site pairs have been uncovered of dissociatively bound H₂O by chemical treatments with dimethyl ether to exhibit alkane dehydrogenation rates comparable to those of commercial Cr- and Pt-based catalysts. Based on these findings, further research focusing on the controlled formation of active and stable LAB site pairs in zirconia or other metal oxide materials holds significant potential in terms of replacing toxic and expensive metals with more abundant alternatives.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at <https://pubs.acs.org/doi/10.1021/jacs.4c07766>.

Surface area assessments; X-ray diffraction; active site titrations by H₂O; additional supporting data; synthesis of Hf-doped ZrO₂; H₂ temperature programmed reduction; calculation of enthalpies and entropies using statistical mechanics formalisms; reaction coordinate at differing reaction conditions; sensitivity of the reaction coordinate on selection of entropy treatments; supporting computational data; DFT-optimized atomic coordinates ([PDF](#))

AUTHOR INFORMATION

Corresponding Author

Enrique Iglesia – Department of Chemical and Biomolecular Engineering, University of California at Berkeley, Berkeley, California 94720, United States; Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States; [orcid.org/0000-0003-4109-1001](#); Email: iglesia@berkeley.edu

Authors

Nicholas R. Jaegers – Department of Chemical and Biomolecular Engineering, University of California at Berkeley, Berkeley, California 94720, United States; [orcid.org/0000-0002-9930-7672](#)

Vardan Danghyan – Department of Chemical and Biomolecular Engineering, University of California at Berkeley, Berkeley, California 94720, United States

Junnan Shangguan – Department of Chemical and Biomolecular Engineering, University of California at Berkeley, Berkeley, California 94720, United States

Carlos Lizandara-Pueyo – BASF SE, 67056 Ludwigshafen am Rhein, Germany; [orcid.org/0000-0003-1146-775X](#)

Prashant Deshlahra – Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts 02155, United States; [orcid.org/0000-0002-1063-4379](#)

Complete contact information is available at: <https://pubs.acs.org/10.1021/jacs.4c07766>

Notes

The authors declare the following competing financial interest(s): The authors have filed provisional patent applications for the catalyst compositions and methods of preparation and pretreatment protocols of metal oxides for alkane dehydrogenation reactions.

ACKNOWLEDGMENTS

We acknowledge BASF for financial support and technical guidance through the California Research Alliance. This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility located at Lawrence Berkeley National Laboratory, operated under Contract No. DE-AC02-05CH11231 using NERSC award ERCAP0023779. The authors acknowledge Dr. Gregory Tate for restoring the Quantasorb QS-10 used in TPR experiments.

REFERENCES

- (1) Agarwal, A.; Sengupta, D.; El-Halwagi, M. Sustainable Process Design Approach for on-Purpose Propylene Production and Intensification. *ACS Sustainable Chem. Eng.* **2018**, *6*, 2407–2421.
- (2) Chen, S.; et al. Propane Dehydrogenation on Single-Site [PtZn₄] Intermetallic Catalysts. *Chem-US* **2021**, *7*, 387–405.
- (3) Soraker, P.; Jensen, S.; Rytter, E.; Ronnekleiv, M. Pretreatment of a Pt/Sn-Based Catalyst. EP 1 206 319 A1, 2002.
- (4) Zimmermann, H.; Versluis, F. Process and Catalyst for Dehydrogenation or Dehydrocyclization of Hydrocarbons. USS378350A, 1995.
- (5) Conley, M. P.; Delley, M. F.; Núñez-Zarur, F.; Comas-Vives, A.; Copérat, C. Heterolytic Activation of C–H Bonds on Cr^{III}-O Surface Sites Is a Key Step in Catalytic Polymerization of Ethylene and Dehydrogenation of Propane. *Inorg. Chem.* **2015**, *54*, 5065–5078.
- (6) Chen, S.; Chang, X.; Sun, G.; Zhang, T.; Xu, Y.; Wang, Y.; Pei, C.; Gong, J. Propane Dehydrogenation: Catalyst Development, New Chemistry, and Emerging Technologies. *Chem Soc Rev* **2021**, *50*, 3315–3354.
- (7) Wang, W.; et al. Single Co Sites in Ordered SiO₂ Channels for Boosting Nonoxidative Propane Dehydrogenation. *ACS Catal.* **2022**, *12*, 2632–2638.
- (8) Wu, L.; Ren, Z.; He, Y.; Yang, M.; Yu, Y.; Liu, Y.; Tan, L.; Tang, Y. Atomically Dispersed Co²⁺ Sites Incorporated into a Silicalite-1 Zeolite Framework as a High-Performance and Coking-Resistant Catalyst for Propane Nonoxidative Dehydrogenation to Propylene. *ACS Appl. Mater. Interfaces* **2021**, *13*, 48934–48948.
- (9) Hu, B.; Kim, W.-G.; Sulmonetti, T. P.; Sarazen, M. L.; Tan, S.; So, J.; Liu, Y.; Dixit, R. S.; Nair, S.; Jones, C. W. A Mesoporous Cobalt Aluminate Spinel Catalyst for Nonoxidative Propane Dehydrogenation. *Chemcatchem* **2017**, *9*, 3330–3337.
- (10) Searles, K.; Siddiqi, G.; Safonova, O. V.; Copérat, C. Silica-Supported Isolated Gallium Sites as Highly Active, Selective and Stable Propane Dehydrogenation Catalysts. *Chem. Sci.* **2017**, *8*, 2661–2666.
- (11) Cybulskis, V. J.; Pradhan, S. U.; Lovón-Quintana, J. J.; Hock, A. S.; Hu, B.; Zhang, G.; Delgass, W. N.; Ribeiro, F. H.; Miller, J. T. The Nature of the Isolated Gallium Active Center for Propane Dehydrogenation on Ga/SiO₂. *Catal. Lett.* **2017**, *147*, 1252–1262.
- (12) Otroshchenko, T.; Sokolov, S.; Stoyanova, M.; Kondratenko, V. A.; Rodemerck, U.; Linke, D.; Kondratenko, E. V. ZrO₂-Based Alternatives to Conventional Propane Dehydrogenation Catalysts: Active Sites, Design, and Performance. *Angew. Chem., Int. Ed.* **2015**, *54*, 15880–15883.
- (13) Tanabe, K. Surface and Catalytic Properties of ZrO₂. *Mater. Chem. Phys.* **1985**, *13*, 347–364.

(14) Tanabe, K.; Yamaguchi, T. Acid-Base Bifunctional Catalysis by ZrO_2 and Its Mixed Oxides. *Catal. Today* **1994**, *20*, 185–197.

(15) Radha, A.; Bomati-Miguel, O.; Ushakov, S. V.; Navrotsky, A.; Tartaj, P. Surface Enthalpy, Enthalpy of Water Adsorption, and Phase Stability in Nanocrystalline Monoclinic Zirconia. *J. Am. Ceram. Soc.* **2009**, *92*, 133–140.

(16) Lackner, P.; Hulva, J.; Köck, E.-M.; Mayr-Schmöller, W.; Choi, J. I. J.; Penner, S.; Diebold, U.; Mittendorfer, F.; Redinger, J.; Klötzer, B.; et al. Water Adsorption at Zirconia: From the ZrO_2 (111)/ $Pt_3Zr(0001)$ Model System to Powder Samples. *J. Mater. Chem. A* **2018**, *6*, 17587–17601.

(17) Korhonen, S. T.; Calatayud, M.; Krause, A. O. I. Stability of Hydroxylated (111) and (101) Surfaces of Monoclinic Zirconia: A Combined Study by DFT and Infrared Spectroscopy. *J. Phys. Chem. C* **2008**, *112*, 6469–6476.

(18) Iglesia, E.; Shangguan, J. Pre-Treating Metal Oxide Catalysts for Alkane Dehydrogenation. 20230303465, 2022.

(19) Dangyan, V.; Jaegers, N.; Lizandara-Pueyo, C.; Cain-Borgman, C.; Dellamorte, J.; Kundu, A.; Shangguan, J.; Iglesia, E. Lewis Acid Base Pairs as Highly Active Catalytic Sites for Hydrogenation and Dehydrogenation Processes. 2024016500, 2023.

(20) Zhang, Y.; Zhao, Y.; Otroshchenko, T.; Lund, H.; Pohl, M.-M.; Rodemerck, U.; Linke, D.; Jiao, H.; Jiang, G.; Kondratenko, E. V. Control of Coordinatively Unsaturated Zr Sites in ZrO_2 for Efficient C–H Bond Activation. *Nat. Commun.* **2018**, *9*, 3794.

(21) Li, W.; Huang, H.; Li, H.; Zhang, W.; Liu, H. Facile Synthesis of Pure Monoclinic and Tetragonal Zirconia Nanoparticles and Their Phase Effects on the Behavior of Supported Molybdena Catalysts for Methanol Selective Oxidation. *Langmuir* **2008**, *24*, 8358–8366.

(22) Price, G. L.; Iglesia, E. Matrix-Method for Correction of Mass-Spectra in Deuterium-Exchange Applications. *Ind. Eng. Chem. Res.* **1989**, *28*, 839–844.

(23) Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. *Phys. Rev. B* **1996**, *54*, 11169–11186.

(24) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **1996**, *77*, 3865–3868.

(25) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H–Pu. *J. Chem. Phys.* **2010**, *132*, 154104.

(26) Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. *Phys. Rev. B* **1999**, *59*, 1758.

(27) Jaegers, N. R.; Iglesia, E. Theoretical Assessment of the Mechanism and Active Sites in Alkene Dimerization on Ni Monomers Grafted onto Aluminosilicates: (Ni-OH)⁺ Centers and C–C Coupling Mediated by Lewis Acid-Base Pairs. *J. Am. Chem. Soc.* **2023**, *145*, 6349–6361.

(28) Monkhorst, H. J.; Pack, J. D. Special Points for Brillouin-Zone Integrations. *Phys. Rev. B* **1976**, *13*, 5188–5192.

(29) Henkelman, G.; Jonsson, H. Improved Tangent Estimate in the Nudged Elastic Band Method for Finding Minimum Energy Paths and Saddle Points. *J. Chem. Phys.* **2000**, *113*, 9978–9985.

(30) Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A Climbing Image Nudged Elastic Band Method for Finding Saddle Points and Minimum Energy Paths. *J. Chem. Phys.* **2000**, *113*, 9901–9904.

(31) Henkelman, G.; Jónsson, H. A Dimer Method for Finding Saddle Points on High Dimensional Potential Surfaces Using Only First Derivatives. *J. Chem. Phys.* **1999**, *111*, 7010–7022.

(32) McQuarrie, D. In *Statistical Mechanics*; University Science Books: Sausalito, CA, 2000; pp 222–223.

(33) Sprowl, L. H.; Campbell, C. T.; Árnadóttir, L. Hindered Translator and Hindered Rotor Models for Adsorbates: Partition Functions and Entropies. *J. Phys. Chem. C* **2016**, *120*, 9719–9731.

(34) Deshlahra, P.; Iglesia, E. Methanol Oxidative Dehydrogenation on Oxide Catalysts: Molecular and Dissociative Routes and Hydrogen Addition Energies as Descriptors of Reactivity. *J. Phys. Chem. C* **2014**, *118*, 26115–26129.

(35) Deshlahra, P.; Iglesia, E. Reactivity and Selectivity Descriptors for the Activation of C–H Bonds in Hydrocarbons and Oxygenates on Metal Oxides. *J. Phys. Chem. C* **2016**, *120*, 16741–16760.

(36) Johnson, R. D. NIST Standard Reference Database Number 101. In *NIST Computational Chemistry Comparison and Benchmark Database*, 2022. <http://cccbdb.nist.gov/> (accessed 2022–04–04).

(37) Cramer, C. J. In *Essentials of Computational Chemistry: Theories and Models*; Wiley, 2005; p 618.

(38) Wang, S.; Iglesia, E. Substituent Effects and Molecular Descriptors of Reactivity in Condensation and Esterification Reactions of Oxygenates on Acid-Base Pairs at TiO_2 and ZrO_2 Surfaces. *The Journal of Physical Chemistry C* **2016**, *120*, 21589–21616.

(39) Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; et al. Commentary: The Materials Project: A Materials Genome Approach to Accelerating Materials Innovation. *APL Mater.* **2013**, *1*, 011002.

(40) Monkhorst, H. J.; Pack, J. D. Special Points for Brillouin-Zone Integrations. *Phys. Rev. B* **1976**, *13*, 5188.

(41) Zhang, Y.; Zhao, Y.; Otroshchenko, T.; Han, S.; Lund, H.; Rodemerck, U.; Linke, D.; Jiao, H.; Jiang, G.; Kondratenko, E. V. The Effect of Phase Composition and Crystallite Size on Activity and Selectivity of ZrO_2 in Non-Oxidative Propane Dehydrogenation. *J. Catal.* **2019**, *371*, 313–324.

(42) Wu, H.; Duan, Y.; Liu, K.; Lv, D.; Qin, L.; Shi, L.; Tang, G. First-Principles Study of Phase Transition and Band Structure of ZrO_2 under Pressure. *J. Alloys Compd.* **2015**, *645*, 352–357.

(43) Hofmann, A.; Sauer, J. Surface Structure of Hydroxylated and Sulfated Zirconia. A Periodic Density-Functional Study. *J. Phys. Chem. B* **2004**, *108*, 14652–14662.

(44) French, R. H.; Glass, S.; Ohuchi, F.; Xu, Y.-N.; Ching, W. Experimental and Theoretical Determination of the Electronic Structure and Optical Properties of Three Phases of ZrO_2 . *Phys. Rev. B* **1994**, *49*, 5133.

(45) Howard, C.; Hill, R.; Reichert, B. Structures of ZrO_2 Polymorphs at Room Temperature by High-Resolution Neutron Powder Diffraction. *Acta Crystallogr., Sect. B: Struct. Sci.* **1988**, *44*, 116–120.

(46) Ruh, R.; Corfield, P. W. Crystal Structure of Monoclinic Hafnia and Comparison with Monoclinic Zirconia. *J. Am. Ceram. Soc.* **1970**, *53*, 126–129.

(47) Zhang, Y.; Zhao, Y.; Otroshchenko, T.; Lund, H.; Pohl, M.-M.; Rodemerck, U.; Linke, D.; Jiao, H.; Jiang, G.; Kondratenko, E. V. Control of Coordinatively Unsaturated Zr Sites in ZrO_2 for Efficient C–H Bond Activation. *Nat. Commun.* **2018**, *9*, 3794.

(48) Hofmann, A.; Clark, S. J.; Oppel, M.; Hahndorf, I. Hydrogen Adsorption on the Tetragonal ZrO_2 (101) Surface: A Theoretical Study of an Important Catalytic Reactant. *Phys. Chem. Chem. Phys.* **2002**, *4*, 3500–3508.

(49) Haase, F.; Sauer, J. The Surface Structure of Sulfated Zirconia: Periodic Ab Initio Study of Sulfuric Acid Adsorbed on ZrO_2 (101) and ZrO_2 (001). *J. Am. Chem. Soc.* **1998**, *120*, 13503–13512.

(50) Christensen, A.; Carter, E. A. First-Principles Study of the Surfaces of Zirconia. *Phys. Rev. B* **1998**, *58*, 8050.

(51) Morterra, C.; Cerrato, G.; Ferroni, L.; Negro, A.; Montanaro, L. Surface Characterization of Tetragonal ZrO_2 . *Appl. Surf. Sci.* **1993**, *65*, 257–264.

(52) Momma, K.; Izumi, F. Vesta 3 for Three-Dimensional Visualization of Crystal, Volumetric and Morphology Data. *J. Appl. Crystallogr.* **2011**, *44*, 1272–1276.

(53) Xu, M.; Lunsford, J. H.; Goodman, D. W.; Bhattacharyya, A. Synthesis of Dimethyl Ether (DME) from Methanol over Solid-Acid Catalysts. *Applied Catalysis A: General* **1997**, *149*, 289–301.

(54) Takeishi, K.; Suzuki, H. Steam Reforming of Dimethyl Ether. *Appl. Catal., A* **2004**, *260*, 111–117.

(55) Vu, B. K.; Song, M. B.; Ahn, I. Y.; Suh, Y.-W.; Suh, D. J.; Kim, W.-I.; Koh, H.-L.; Choi, Y. G.; Shin, E. W. Pt-Sn Alloy Phases and Coke Mobility over Pt-Sn/ Al_2O_3 and Pt-Sn/ $ZnAl_2O_4$ Catalysts for Propane Dehydrogenation. *Appl. Catal., A* **2011**, *400*, 25–33.

(56) Voskoboynikov, T. V.; Wei, D. H.; Sachtler, J. W. A.; Vora, B. V. Dehydrogenation Catalyst Composition. US6756340B2, 2002.

(57) Luo, Y.-R. *Comprehensive Handbook of Chemical Bond Energies*; CRC Press: New York, 2007.

(58) Campbell, C. T.; Sellers, J. R. V. The Entropies of Adsorbed Molecules. *J. Am. Chem. Soc.* **2012**, *134*, 18109–18115.

(59) Flaherty, D. W.; Iglesia, E. Transition-State Enthalpy and Entropy Effects on Reactivity and Selectivity in Hydrogenolysis of *n*-Alkanes. *J. Am. Chem. Soc.* **2013**, *135*, 18586–18599.

(60) Onishi, T.; Abe, H.; Maruya, K.-i.; Domen, K. I.R. Spectra of Hydrogen Adsorbed on ZrO_2 . *J. Chem. Soc., Chem. Commun.* **1985**, 617–618.

(61) Nakatsuji, H.; Hada, M.; Ogawa, H.; Nagata, K.; Domen, K. Theoretical Study on the Molecular and Dissociative Adsorptions of H_2 on a ZrO_2 Surface. *J. Phys. Chem.* **1994**, *98*, 11840–11845.

(62) Jaegers, N.; Hense, J.; Shangguan, J.; Deshlahra, P.; Iglesia, E. Heterolytic Activation of H-H and H-OH Bonds on Lewis Acid-Base Site Pairs of Metal Oxides: Impact of Geometry and through-Space Interactions on Brønsted-Evans-Polanyi Scaling Relations, 2024, in preparation.

(63) Kozuch, S.; Shaik, S. How to Conceptualize Catalytic Cycles? The Energetic Span Model. *Acc. Chem. Res.* **2011**, *44*, 101–110.

(64) Klinman, J. P.; Kohen, A. Hydrogen Tunneling Links Protein Dynamics to Enzyme Catalysis. *Annu. Rev. Biochem.* **2013**, *82*, 471–496.

(65) Ruiz Puigdollers, A.; Schlexer, P.; Tosoni, S.; Pacchioni, G. Increasing Oxide Reducibility: The Role of Metal/Oxide Interfaces in the Formation of Oxygen Vacancies. *ACS Catal.* **2017**, *7*, 6493–6513.

(66) Hoang, D.; Lieske, H. Effect of Hydrogen Treatments on ZrO_2 and Pt/ ZrO_2 Catalysts. *Catal. Lett.* **1994**, *27*, 33–42.

(67) Piskorz, W.; Gryboś, J.; Zasada, F.; Cristol, S.; Paul, J.-F.; Adamski, A.; Sojka, Z. Periodic Dft and Atomistic Thermodynamic Modeling of the Surface Hydration Equilibria and Morphology of Monoclinic ZrO_2 Nanocrystals. *J. Phys. Chem. C* **2011**, *115*, 24274–24286.

CAS BIOFINDER DISCOVERY PLATFORM™

STOP DIGGING THROUGH DATA — START MAKING DISCOVERIES

CAS BioFinder helps you find the right biological insights in seconds

Start your search

